
School of Electronic Engineering
and Computer Science

Final Year
Undergraduate Project 2023/24

Final Report

Programme of study:
BSc Computer Science

Project Title:

Generic array sizes in the Go
programming language

Supervisor:
Dr. Raymond Hu

Student Name:
Dawid Lachowicz

Date: April 29, 2024

Abstract

Go is a language developed by Google and the open-source community and is widely
used in industry. Many have praised Go for its simplicity, while others criticised its
lack of certain features, most notably generic programming. While the introduction
of generics in Go 1.18 addressed the largest criticism, there are still areas where a
more expressive version of the language would benefit users. One such area, which
this work focuses on, is generically sized (static) arrays. To achieve this, a new kind
of type parameter is introduced — one which can be instantiated with (compile-time)
constant integers values. This work formalises a subset of Go and then extends the
formalisation with type parameters that include the new numerical type parameters.
A translation from the extended language to regular Go is also formalised (monomor-
phisation). To test the formalisations, two interpreters (with static type-checking) and
a monomorphiser have been implemented, along with rigorous testing.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Problem Statement . 3
1.3 Aim . 4
1.4 Objectives . 4
1.5 Research Questions . 4
1.6 Report Structure . 5

2 Background Research 6
2.1 Generic array sizes in other languages . 6

2.1.1 Const generics in Rust . 6
2.2 Type systems and programming language theory 7
2.3 Dependent and refinement types . 7
2.4 Featherweight Go . 8

3 Arrays by example 10
3.1 Gentle introduction . 10
3.2 Array semantics . 12

3.2.1 Limitations . 15
3.3 Data structure examples . 15

4 Generically sized arrays 19
4.1 Type-set interfaces and the const interface 19
4.2 Comparison with existing proposal . 20
4.3 Allowed const type arguments . 21
4.4 Allowed operations on generic arrays . 23
4.5 Summary of proposal . 23

5 Featherweight Go with Arrays 25
5.1 FGA Syntax . 25
5.2 FGA Reduction . 26
5.3 FGA Typing . 28
5.4 FGA Properties . 30

6 Featherweight Generic Go with Arrays 33
6.1 FGGA Syntax . 33
6.2 FGGA Reduction . 33
6.3 FGGA Typing . 35
6.4 FGGA Properties . 38

7 Monormorphisation from FGGA to Go 43
7.1 Formalisation . 43
7.2 Monormorphisation properties . 44

2

8 Implementation 49
8.1 Libraries and patterns . 49
8.2 Testing . 49

9 Conclusion 51
9.1 Further work . 51

References 52

A Risk Assessment 52

B Project Plan 53

C Description of array semantics 54
C.1 Value type . 54
C.2 Comparison . 54

D Code examples 55
D.1 Generic programming in C using macros . 55
D.2 Full FGA implementation of resizeable arrays 55
D.3 Full FGA implementation of dequeues . 60

E Proposal addendum 68
E.1 More complex const bounds . 68
E.2 Slicing generic arrays . 69
E.3 The len function . 69

F Featherweight Go with Arrays addendum 71
F.1 FGA Syntax: Expressions . 71
F.2 FGA Reduction . 71
F.3 FGA Typing . 72

G Featherweight Generic Go with Arrays addendum 73
G.1 FGGA Typing . 73

G.1.1 Not Referenced predicate . 73

H Formal derivation examples 75
H.1 Featherweight Go with Arrays reduction . 75
H.2 Featherweight Go with Arrays type checking 75
H.3 Featherweight Generic Go with Arrays reduction 78
H.4 Featherweight Generic Go with Arrays type checking 79

3

1 Introduction

Generics have been introduced in the Go programming language following the theoretical
work by Griesemer et al. (2020) in Featherweight Go. The Type Parameters Proposal lists sev-
eral generic programming constructs not supported by the initial implementation of generics
(as of Go 1.18). Among them is “no parameterization on non-type values such as constants.”
(Taylor and Griesemer, 2021) The most notable use case of such type parameters would be
for arrays. In Go, the size of an array is part of its type (The Go Programming Language
Specification, 2023). As such, if the programmer wishes to write a function that operates
on arrays or a data type that contains arrays, it is necessary to hard-code the size of the
operated/contained array. This imposes a limitation on what abstraction may be introduced
where arrays are concerned. Extending the generic type system in Go to support constants
as type parameters aims to resolve this issue.

1.1 Background

Arrays are a primitive data structure found in many programming languages. However,
various languages treat arrays differently. In Java, arrays are objects, and variables of array
type are references to those objects. The size (or length) of an array is not part of its
type. However, it is a property of the array object instance and cannot be changed after
initialisation of the instance (Gosling et al., 2023). C# treats arrays analogously (B. Wagner,
2023). In languages like Go and Rust, arrays are value types, and the size of the array is
part is of its type (The Go Programming Language Specification, 2023; The Rust Reference,
2020). In C, the size of an array is also part of its type. However, expressions of array
type are converted to pointers to the first element of the array (ISO/IEC, 2018). Since
dynamically typed languages do not have types associated with variables, those languages
will not be discussed here.

1.2 Problem Statement

Arrays in the Go programming language have a number of use cases and situational benefits
over slices — their dynamic counterparts. One practical scenario is when wanting to use a
collection as a map key. Since the comparison operators are fully defined for arrays, they
may be used as map keys, which is a very common data structure used in Go programs. The
comparison operators are not fully defined for slices. Hence, they cannot be used as map
keys in the same way. (The Go Programming Language Specification, 2023). Arrays may
also be useful when value semantics are desired, i.e. assigning an array to another variable
or passing it as an argument to a function makes a copy. For slices, which hold references
to underlying arrays, copies need to be performed manually, which can be more verbose and
error-prone. Since the size of an array is part of its type, it can also serve as documentation
to the reader of the code.

In current day Go (version 1.21 as of the time of writing), there is no way of abstracting
over arrays of any size, e.g. it is impossible to define a function that operates on an array
of any size. While workarounds exist that make use of type set interfaces introduced in the
Type Parameters Proposal (Taylor and Griesemer, 2021), this solution is not very elegant

4

since it requires manually enumerating all the array sizes the function can operate on, and
also cannot be used in functions exposed as part of a library, as there is no way of knowing
what array size the library consumer will use.

This work aims to address this problem by introducing constant (integer) type parameters
that may be used to define generically-sized array types. A proposal exists to allow for generic
parameterisation of array sizes in Go, demonstrating the demand for this feature (Werner,
2021). However, the design proposed in this work differs from the existing proposal.

1.3 Aim

The aim is to produce a set of formal rules specifying the syntax, reduction semantics and
type system of a subset of the Go programming language, extended with support for generi-
cally sized arrays. The rules are to be verified by implementing an interpreter that includes
the new language feature, as well as a monomorphiser that translates the extended language
into regular Go.

As an extension to the project, a formal proof of correctness of the language extension
may be carried out. Another extension would be to implement the proposed design into the
mainstream Go compiler.

1.4 Objectives

• Investigate how the problem of abstracting over arrays of any size has been solved in
other statically-typed programming languages, and what research has been done in
this area.

• Formalise the syntax, reduction and typing rules of arrays in Go, based on Feather-
weight Go, referred to as FGA going forward (Griesemer et al., 2020).

• Design and formalise the syntax, reduction and typing rules of generically sized arrays,
based on Featherweight Generic Go, updated with the existing state of generics in Go,
referred to as FGGA going forward (Griesemer et al., 2020).

• Implement and test a type checker and interpreter for FGA extended with support for
arrays.

• Implement and test a type checker and interpreter for FGGA extended with support
for generically sized arrays.

• Implement and test a monomorphiser that translates code written in the extended
FGGA into regular Go code.

• Submit a proposal for adding the language extension to the open source community,
addressing the challenges previously discussed by the community, and address any
feedback for my design.

5

1.5 Research Questions

• How have other statically typed languages where the size of an array is part of its type
tackled this issue, if at all?

• How can the Go type system be extended to support generically sized arrays, compat-
ible with the existing implementation of generics in Go?

• How can the proposed design be verified to be correct?

1.6 Report Structure

The second chapter explores how other languages have tackled the problem of abstracting
over arrays of any size, as well as past research in the area of programming languages, in
particular relating to the Go programming language. The third chapter presents a rationale
for introducing generically sized arrays in Go through examples. The fourth chapter goes into
detail about the proposed language extension, and explores certain design considerations.
Chapter five introduces the formal rules for “Featherweight Go with Arrays” — a subset of
Go containing arrays, based on the paper going by the name “Featherweight Go” (Griesemer
et al., 2020). Chapter six extends the rules with generics as found in today’s version of Go
and the proposed design for generically sized arrays. Chapter seven formally presents a way
of translating FGGA to regular Go via monomorphisation. Finally, the eighth chapter gives
an overview of the implementation of two interpreters and a monomorphiser, corresponding
to the rules found in chapters five, six and seven.

6

2 Background Research

2.1 Generic array sizes in other languages

Languages where the size of an array is not part of its type (e.g. Java, C#), automatically
abstract over arrays of all sizes, as there is no way of expressing that a variable holds an
array of a specific size.

In C, macros can be used to achieve a form of generic programming, which includes the
ability to parameterise the size of an array forming part of its type (see code example in
appendix D.1).

2.1.1 Const generics in Rust

In Rust, arrays are treated very similarly to how they are treated in Go: arrays are value
types, and the size is part of the array’s type. As such, the development of arrays in Rust
is of particular interest when designing the generic extension in Go. In particular, const
generics have already been introduced to Rust, facilitating parameterisation over array sizes
(The const generics project group, 2021).

The syntax introduces the const keyword in the type parameter list, followed by the type
parameter name and its bound (same as for non-constant type parameters). The current
implementation only permits integral types for the bounds of const type parameters, which is
reasonable given that the main rationale for const generics is to be able to parameterise over
array sizes. The authors could have limited const generics to the usize type (the type used
for array sizes in Rust). However, they claim it would not have made the implementation
simpler (Aronson, 2017). Since Go puts a strong emphasis on language simplicity (Pike,
2015), this work proposes to limit constant generics in Go to only accept integral type
parameters of the same type that can be used as array sizes, i.e. “a non-negative constant
representable by a value of type int” (The Go Programming Language Specification, 2023).
The implication of this design decision is that the syntax can be simplified, as const can be
made to imply the array-length type described by the Go specification.

Rust imposes limitations on constant type arguments for ease of implementation. In
particular, expressions including a const parameter (with the exception of a lone const pa-
rameter) are not permitted as type arguments. In the monomorphisation model of generics,
recursive definitions with const type argument expressions containing const type parame-
ters could lead to extreme code bloat in the compiled binary. Another issue would be the
potential for the const type argument to go out of bounds (e.g. less than 0 as a result of
a subtraction operation on the type parameter). The simple solution is to not permit such
type arguments. This insight can be carried over to the Go design. The simplicity of the
feature with this constraint also aligns with the ethos of Go (Pike, 2015).

While Rust implements generics using monomorphisation (Rust Compiler Development
Guide, 2023), Go uses a hybrid of monomorphisation and dictionary-passing (Scales and
Randall, 2022). Further investigation needs to be undertaken to determine whether this dif-
ference affects how constant type parameters could be implemented in Go, such as potentially
lifting the constraint on recursive constant type parameter expressions.

7

struct ArrayPair<T, const N: usize> {

left: [T; N],

right: [T; N],

}

Figure 1: Example of const generics for arrays in Rust (The const generics project group,
2021)

2.2 Type systems and programming language theory

B.C. Pierce (2002) covers core topics in programming languages and type theory including
how to precisely describe the syntax, evaluation and static type system of programming
languages, and techniques for proving properties of those languages. The book formally
presents the notion of language type safety consisting of progress and preservation.

The progress theorem says that well-typed terms (i.e. those that are in the typing relation
defined by the typing rules) do not get “stuck”, i.e. they are either terminal values or can
take a reduction step, as defined by the reduction (evaluation) rules.

The preservation theorem says that if a term is well-typed, then it will continue to be
well-typed after a reduction step. Depending on the language, the type system may impose
further restrictions on this theorem, e.g. that the type of the term after taking a step is
exactly the same type as before the step, or that it is a subtype of the type before the step.

To summarise, if we have a term that is well-typed, then by the preservation theorem, it
will continue to be well-typed no matter how many reduction steps are taken. Together with
the progress theorem, we know that the term will always be able to take a reduction step
(because it is well-typed after each one) until it reaches a terminal value. In other words,
the well-typed term will never get “stuck” during execution. These theorems can be used
to prove the soundness of a type system, which is fundamental for any well-designed type
system, including the one proposed in this work.

The book also presents how to conduct such proofs, namely using a technique called
structural induction. Structural induction is analogous to induction on natural numbers,
except that it works on recursively defined structures, such as those found in the formal
rules of programming languages.

2.3 Dependent and refinement types

Both dependent and refinement types have the goal of being able to assign more precise
types in programs, meaning more invariants can be checked at compile time, leading to more
bugs being caught early in software development (Xi and Pfenning, 1999; Jhala and Vazou,
2021).

A dependent type is a type depending on a value, i.e. an element of another type. The
most basic example, and the one we are most concerned with in this work, is the type “array
of size n” where n is an element of the integer type. When n is a parameter as opposed to
a concrete value, this is known as a family of types. This form of dependent typing can be
traced as far back as FORTRAN. Dependent types can be more complex than simple array

8

sizes, e.g. we can express balanced trees (by depending on the values of their heights) or
sorted lists (Bove and Dybjer, 2009).

Dependent typing can be found in research functional languages such as Idris and Agda
(Brady, 2011; Norell, 2007). Dependent types need not depend on constants (i.e. concrete
values known at compile time, such as the literal 1) — they may depend on arbitrary terms
(e.g. variables). Mainstream languages including C++ and Rust, as well as the Go extension
proposed in this work, do restrict the dependency to constants only.

Dependent types are the more general form, whereas refinement types impose a restriction
that the type must depend on a predicate (which itself involves values). These predicates are
said to refine (narrow down) the set of values described by the base type (Jhala and Vazou,
2021). Moreover, unlike dependent types, these predicates cannot be arbitrary expressions
but are rather formed from a more restricted language (than the language they are used in).
The exact restrictions depend on the specifics of the refinement type system. One concrete
example is liquid types which enforce decidability of the predicates. Liquid types have been
implemented for several major languages, including recently for Java, which shows active
development in this area of research. (Vazou, 2015; Gamboa et al., 2023).

Since this work intends to lay the foundation for generically sized arrays, we are not
directly concerned with refinement types. However, in section 4.3 we explore how in the
future we can make the usage of generically sized arrays more expressive through refinements
of the array length, i.e. from arbitrary to a specific range.

2.4 Featherweight Go

For many years, the biggest criticism against the Go language was the lack of generics
(Merrick, 2022; 2021; Kulesza, 2020). The Go team recognised the importance of solving this
problem “right” and consequently reached out to the world of academics for a collaboration,
the result of which was a paper named Featherweight Go (Griesemer et al., 2020). The work
was inspired by Featherweight Java, an effort two decades prior aimed at formalising Java
and its generic extension (Igarashi, B. Pierce, and Wadler, 1999). The common theme in the
two papers is the reduction of the programming language into a small core “featherweight”
subset, making it easier to prove properties about the language and, subsequently, any
proposed extensions. Both papers also extended their language subsets into variants with
generics (parametric polymorphism), and showed how the generic variant can be translated
into the non-generic base language.

Featherweight Go formalises a subset of Go through syntax, reduction and typing rules,
as well as an extended variant with generics. They are used as the starting point for the
formal rules in this work. In their work, Griesemer et al. prove the soundness of the FG
and FGG type systems using the progress and progress theorems described in the previous
section.

Griesemer et al. argue that both “featherweight” and “complete” descriptions of lan-
guages have value. This work will follow the featherweight approach, since it was a suc-
cessful strategy in the case of Featherweight Go, aimed at introducing a new feature to the
language, and keeps the focus on the parts of the language that matter most when making
the addition.

Because the Type Parameters Proposal (implemented as of Go 1.18) only includes a

9

subset of the generic extension features described in Featherweight Go, this work will use
that reduced description, both for simplicity and to better mirror the state of generics in
current-day Go (Taylor and Griesemer, 2021).

Featherweight Go also fully implemented the described languages as interpreters to test
that all presented examples work as expected. This work intends to follow in the footsteps
of Griesemer et al. in this regard.

10

3 Arrays by example

Most of the time, Go programmers will use slices over arrays due to their dynamic nature.
However, when the size of a collection of elements can be determined at compile time, there
are certain benefits to using arrays. This section intends to identify use cases where using
arrays in Go programs may be more beneficial than using slices, and what are the benefits
and the performance implications.

3.1 Gentle introduction

The first function we’ll examine creates a reversed copy of an array/slice. Below is a side-
by-side view of the two functions: the first operating on arrays, and the second operating on
slices.

func reversedArray(arr [N]int) [N]int {

n := len(arr)

for i := 0; i < n/2; i++ {

arr[i], arr[n-i-1] = arr[n-i-1], arr[i]

}

return arr

}

func reversedSlice(s []int) []int {

n := len(s)

newS := make([]int, n)

for i := 0; i < n/2; i++ {

newS[i], newS[n-i-1] = s[n-i-1], s[i]

}

return newS

}

The slice function is almost identical to the array function, except that we need to
explicitly allocate a new slice for the result. Arrays are value types, so simply passing an
array into a function (and similarly returning an array from a function) creates a copy. For
relatively small arrays (8MB in size or less), the memory for the array copy is allocated
on the stack. For slices, however, even for the smallest slices (of length 1 or more), the
reversed function allocates the new slice on the heap. This operation is more expensive,
and so, as the benchmarks show, the array variant of the reversed functions performs on
average around 50% faster for arrays of size 8MB or less. For very small arrays (64 ints or
less), the performance benefits or arrays for this operation are even more apparent. Once
the array reaches 16MB or more, the memory for the copy gets allocated onto the heap and
becomes slower than using slices. The benchmarks are limited to 256MB, since at array sizes
of 512MB the compiler rejects the program since it could potentially use up more than 1GB
of stack space (we need to multiply 512MB by two since we are creating a copy of the array).
So if collections of such large sizes are necessary, slices are the only option. For smaller sizes,
however, arrays perform better.

11

22 24 26 28 210 212 214 216 218 220 222 224
2−2

21

24

27

210

213

216

219

222

225

−2

0

2

4

6

8

10

12

14

16

Number of elements

R
u
n
ti
m
e
(n
s/
op

)

R
el
at
iv
e
sp
ee
d
u
p

BenchmarkReversedArray
BenchmarkReversedSlice

Figure 2: Comparison of reversed function benchmarks captured on Apple M1 Pro

The benchmarks were run on a single core, using GOMAXPROCS=1, and the results of the
functions were written to global variables, in an attempt to prevent the compiler optimiser
from eliminating the benchmarked code (Cheney, 2013).

The literal N in the array type refers to a constant, defined elsewhere in the program. The
function signature only accepts arrays of length N, despite the function body being generic
enough that it could work on arrays of any length. To illustrate the point, the next example
will inline N with an integer literal. The function also happens to only accept int arrays, but
this can easily be fixed using generic type parameters, introduced in Go 1.18 (unfortunately,
at the cost of some performance):

12

func reversedArray[T any](arr [5]T) [5]T {

n := len(arr)

for i := 0; i < n/2; i++ {

arr[i], arr[n-i-1] = arr[n-i-1], arr[i]

}

return arr

}

The implication of this is that for each different array length we want to use the reversed
operation on, we would have to write a new function with the exact same code, or use a code
generation tool to do this for us.

As of Go 1.18, there is a workaround that partially solves the above problem. Interface
types are now defined in terms of the more general notion of type sets, as opposed to method
sets pre Go 1.18 (The Go Programming Language Specification, 2023; The Go Programming
Language Specification, 2021). “General interfaces” were introduced, that can only be (as of
Go 1.21) used as type parameter constraints, and among its features is the ability to specify
a union of types. With this, we can define an interface in terms of the union of differently
sized arrays that we wish to use with our reversed function (Werner, 2021):

type array[T any] interface {

[2]T | [3]T | [4]T | [5]T

}

func reversedArray[T any, A array[T]](arr A) A {

n := len(arr)

for i := 0; i < n/2; i++ {

arr[i], arr[n-i-1] = arr[n-i-1], arr[i]

}

return arr

}

This approach still has limitations. Apart from the obvious burden of having to update
the array interface every time we use an array of a new size, this model breaks down as soon
as we wish to expose such a function as part of a public API. There is no way of knowing
ahead of time what array sizes a user may wish to use, and enumerating them all is infeasible.
Ideally, we’d want a way to abstract over arrays of any size.

3.2 Array semantics

We’ve looked at an example where using arrays is faster than slices. In general, it is difficult
to reliably build array-based data structures that offer better performance than slices, since
all the operations need to be handwritten and optimised. One rule of thumb is that heap
allocations are expensive, and it is easier to avoid heap allocations (e.g. when making copies)
for arrays than for slices. Figures 3 and 4 compare the semantics of arrays versus slices, and
an accompanying description can be found in appendix C.

13

import "fmt"

type Outer struct {

inner Inner

someVal int

}

type Inner struct {

matrix [2][2]int

}

func main() {

x := Outer{Inner{[2][2]int{{1, 2}, {3, 4}}}, 5}

y := x // trivial deep-copy

fmt.Println(x == y) // deep-comparison: prints "true"

myMap := map[Outer]int{x: 42} // structure can be used as map key

fmt.Println(myMap[x]) // prints: 42

fmt.Println(myMap[y]) // prints: 42 (y has same value as x)

y.inner.matrix[0][1] = 10 // update y

fmt.Println(x.inner.matrix[0][1]) // x remains unchanged: prints "2"

fmt.Println(x == y) // deep-comparison: prints "false"

fmt.Println(myMap[x]) // prints: 42 (x remains unchanged)

fmt.Println(myMap[y]) // prints: 0 (new y value not in map)

}

Figure 3: Array semantics allow for trivial deep-copying and comparison

14

import "fmt"

type Outer struct {

inner Inner

someVal int

}

type Inner struct {

matrix [][]int

}

func main() {

x := Outer{Inner{[][]int{{1, 2}, {3, 4}}}, 5}

y := x // non-deep copy: matrix is shared

y.inner.matrix[0][1] = 10 // update y

fmt.Println(x.inner.matrix[0][1]) // x also changed: prints "10"

fmt.Println(x == y) // invalid operation: uncomparable type

_ = map[Outer]int{x: 42} // invalid map key type Outer

}

Figure 4: Slices hold references to underlying data, and cannot be compared

15

3.2.1 Limitations

The drawback of defining array-based data structures and operations on them is that the
array sizes must be fixed at compile time. By making array sizes generic, we can parameterize
array-based data structures over many sizes known at compile time, making them much more
versatile. The following subsection outlines some examples of array-based data structures,
and then we proceed to describe how numerical type parameters can resolve this limitation
and propose a design for them.

3.3 Data structure examples

Array-based data structures can enjoy the benefits of being easily copyable and comparable,
even as part of nested data structures. The figures present two popular data types: a “resiz-
able” array with a fixed maximum capacity, and a double-ended queue with an underlying
fixed-size ring buffer (circular array)1.

The two example data structures can be fully implemented in FGA, with minor adjust-
ments. Most notably, FGA does not support mutation via pointers (or pointers at all), so
functions that “mutate” the data structure return updated copies in FGA instead. Addi-
tionally, user-raised panics (via calls to the Go panic) function are not supported, so some
fallback (such as returning the zero-value, or performing a no-op) is chosen instead.

1The “wasted” slot strategy was used to differentiate between “empty” and “full” states (Johnston, 2017)

16

type Array struct {

arr [N]int

len int

}

func (a *Array) Push(el int) {

if a.len >= N {

panic("array is full")

}

a.arr[a.len] = el

a.len++

}

func (a *Array) Pop() int {

if a.len == 0 {

panic("array is empty")

}

a.len--

return a.arr[a.len]

}

func (a *Array) Get(i int) int {

if i >= a.len {

panic("index out of bounds")

}

return a.arr[i]

}

func (a *Array) Len() int {

return a.len

}

type Array struct {

arr Arr

len Nat

}

func (a Array) Push(el int) Array {

return a.Cap().ifLessEqA(a.len,

ArrayFunc{a},

PushFunc{a, el})

}

func (f PushFunc) call() Array {

return Array{

f.a.arr.set(

f.a.len.val(), f.el),

Succ{f.a.len}}

}

func (a Array) Pop() Array {

return Array{a.arr, a.len.pred()}

}

func (a Array) Get(i Nat) int {

return a.len.ifLessEq(i,

IntFunc{0},

ArrGetFunc{a.arr, i.val()})

}

func (f ArrGetFunc) call() int {

return f.arr[f.i]

}

func (a Array) Len() Nat {

return a.len

}

Figure 5: “Resizeable” array with a fixed underlying buffer. The left-hand side shows
idiomatic Go implementation, while the right-hand side shows FGA compatible implemen-
tation. Full code definitions (including Nat) can be found in the appendix.

17

type Deque struct {

arr [N + 1]int // "waste" a slot to detect fullness

front int

back int

}

func (d *Deque) PushFront(el int) {

if d.wrapped(d.front+1) == d.back { panic("deque is full") }

d.arr[d.front] = el

d.front = d.wrapped(d.front + 1)

}

func (d *Deque) PopFront() int {

if d.front == d.back { panic("deque is empty") }

d.front = d.wrapped(d.front - 1)

return d.arr[d.front]

}

func (d *Deque) PushBack(element int) {

if d.front == d.wrapped(d.back-1) { panic("deque is full") }

d.back = d.wrapped(d.back - 1)

d.arr[d.back] = element

}

func (d *Deque) PopBack() int {

if d.front == d.back { panic("deque is empty") }

el := d.arr[d.back]

d.back = d.wrapped(d.back + 1)

return el

}

func (d *Deque) wrapped(n int) int {

if n < 0 { return N }

if n > N { return 0 }

return n

}

Figure 6: Double-ended queue (deque) with a fixed underlying ring buffer implemented in
idiomatic Go

18

type Deque struct {

arr Arr

front Nat

back Nat

}

func (d Deque) PushFront(el int) Deque {

return d.succ(d.front).ifEqD(d.back, DequeFunc{d}, PushFrontFunc{d, el})

}

func (f PushFrontFunc) call() Deque {

return Deque{

f.d.arr.set(f.d.front.val(), f.el),

f.d.succ(f.d.front), f.d.back}

}

func (d Deque) PopFront() Deque {

return d.front.ifEqD(d.back, DequeFunc{d}, PopFrontFunc{d})

}

func (f PopFrontFunc) call() Deque {

return Deque{f.d.arr, f.d.pred(f.d.front), f.d.back}

}

func (d Deque) GetFront() int {

return d.front.ifEq(d.back,

IntFunc{0}, ArrGetFunc{d.arr, d.pred(d.front).val()})

}

func (d Deque) PushBack(el int) Deque {

return d.front.ifEqD(d.pred(d.back), DequeFunc{d}, PushBackFunc{d, el})

}

func (f PushBackFunc) call() Deque {

return Deque{

f.d.arr.set(f.d.pred(f.d.back).val(), f.el),

f.d.front, f.d.pred(f.d.back)}

}

func (d Deque) PopBack() Deque {

return d.front.ifEqD(d.back, DequeFunc{d}, PopBackFunc{d})

}

func (f PopBackFunc) call() Deque {

return Deque{f.d.arr, f.d.front, f.d.succ(f.d.back)}

}

func (d Deque) GetBack() int {

return d.front.ifEq(d.back, IntFunc{0}, ArrGetFunc{d.arr, d.back.val()})

}

Figure 7: Double-ended queue (deque) with a fixed underlying ring buffer implemented in
FGA. Full code definitions can be found in appendix D.3.

19

4 Generically sized arrays

This section details a minimal design for the addition of generically sized arrays and numer-
ical type parameters to Go. We also compare this design against the existing proposal by
(Werner, 2021) and discuss future extensions to this feature. Many of the points discussed
in this section were published as a proposal in the Go open source community, as an output
of this work, in order to foster discussion and gather feedback (Lachowicz, 2024).

4.1 Type-set interfaces and the const interface

We’ve already looked at type set-based interfaces introduced in Go 1.18. If we treat array
lengths as types, then we now have a conceptual set of types 0, 1, 2, 3, etc. Similarly, we
can conceptually define the const type as the type set of all array lengths:

type const interface {

0 | 1 | 2 | 3 | ...

}

Where the ... means the pattern repeats for all the non-negative integers. In prac-
tice, const would be another “special” predeclared interface type, just like the existing
comparable that “denotes the set of all non-interface types that are strictly comparable”
(The Go Programming Language Specification, 2023). Just like comparable, const would
be an interface that can only be used as a type parameter constraint, and not e.g. as the
type of a variable, function parameter or return type. This comparable interface is not de-
fined in terms of regular Go code but rather exists on the level of the language itself. const
would follow the same pattern. The choice of the identifier const is to ensure backwards
compatibility with existing programs, as this keyword is currently not allowed to be used as
a type name. Just like a union type set, const can be instantiated with one of the elements
of the union, i.e. a non-negative integer literal. This restricts numerical type arguments to
strictly compile-time constant integers. Such a type parameter could then be used as the
size of an array. With such an extension, we can express the reversed function from the
previous section as follows:

func reversed[T any, N const](arr [N]T) [N]T {

n := len(arr)

for i := 0; i < n/2; i++ {

arr[i], arr[n-i-1] = arr[n-i-1], arr[i]

}

return arr

}

Note how once again, the body of the function remains unchanged. The only difference
is that N is now a type parameter bound by the const interface. The above function can
operate on any array of any size and any element type.

The rest of this work looks at the theory and implementation of the const type into the
existing Go language. We will examine a language called Featherweight Generic Go With
Arrays (FGGA), which is a subset of Go, modulo the addition of numerical type parameters.

20

Since FGGA only considers “classic” (method set) interfaces, const will not be an interface
type in FGGA, but rather in its own category. This category can be thought of as non-
method set interfaces, since the two have the same restrictions, i.e. they can only be used
as type parameter bounds.

4.2 Comparison with existing proposal

Shortly after the Type Parameters proposal was published (Taylor and Griesemer, 2021), a
proposal to extend generics to array sizes was published (Werner, 2021). It would allow type
set interfaces of the following form:

type Array[T any] interface {

[...]T

}

In this design, the parameterisation of the array size is implicit using ... and does
not appear in the list of type parameters, meaning the numerical type parameter cannot be
referenced directly. Instead, the proposal author suggests using the feature as follows:

type Dim interface {

[...]struct{}

}

type Matrix[D Dim] [len(D)][len(D)]int

The example can be simplified slightly, by inlining the type set directly in into the type
parameter constraint (allowed as of Go 1.18):

type Matrix[D [...]struct{}] [len(D)][len(D)]int

It could then be instantiated as follows:

myMatrix := Matrix[[5]struct{}]{}

Compare this with the proposal presented in this work. Using the const interface, the
analogous code would be as follows:

type Matrix[D const] [D][D]int

myMatrix := Matrix[5]{}

This approach mandates much less boilerplate than the current proposal, as the type
consumer is not forced to create “dummy” type arguments, and the type provider is not
forced to retrieve an implicit numerical parameter through the len function. Explicit nu-
merical type parameters would make generic arrays a first-class feature of Go, consistent
with the rest of the language. All the existing compound data types in Go can already be
fully type parameterised (slices: []T, maps: map[K]V and channels: chan T), except for
arrays, so this work would bridge that gap ([N]T), without making the feature feel like a

21

// Example 1: syntactically same constraints

type ArrayPair[T any, A [...]T, B [...]T] struct {

left: A,

right: B,

}

// Example 2: same constraints using shorthand

type ArrayPair[T any, A, B [...]T] struct {

left: A,

right: B,

}

Figure 8: Examples of ambiguity when using [...]T to constrain multiple type parameters

workaround. In addition, explicit numerical type parameters make the code more readable,
as the programmer can immediately see when a type is parameterised on integers.

Not only would arrays become first class, but so would numerical type parameters. Cur-
rently, arrays are the only types that accept a numerical type parameter, to parameterise
the length of an array type. The const interface would allow any type or function to accept
a constant integer (or another const bounded type parameter) as a type argument.

The benefit of Werner’s proposal is that it uses existing Go syntax: [...]T can already
be used to denote an array’s type when constructing an array literal:

myArray := [...]int{1, 2, 3}

where myArray has an inferred type of [3]int. It’s worth noting, however, that this
syntax is used for type inference, as opposed to denote the type of a value, similar to how
in some cases type arguments can be omitted, where the compiler is able to infer what they
are.

Another shortcoming of the implicit [...] syntax to parameterise array sizes, is that
it becomes unclear whether two type parameters of the same constraint [...]T (as shown
in figure 8) have the same length. If yes, then how do we express two type parameters of
the different lengths? If not, then how do we express that two type parameters must have
the same length? How about when we use the shorthand syntax to collapse the bounds
of multiple type parameters? Explicit numerical type parameters make this differentiation
trivial, enhancing the readability of the code.

The proposal mentions making len applicable to array types in addition to array values
(as seen in Werner’s examples presented above), however, as pointed out in the GitHub
issue2, this is unnecessary as the desired behaviour can already be achieved by applying len

to an instantiated value of an array type parameter.

2https://github.com/golang/go/issues/44253#issuecomment-820999513

22

https://github.com/golang/go/issues/44253#issuecomment-820999513

4.3 Allowed const type arguments

We’ve already seen how constant non-negative integers can be used as numerical type argu-
ments. Additionally, since a numerical type parameter stands in for a constant integer, it
can itself be used as a type argument. This is consistent with how in Go type parameters
satisfy their own bounds, and is the basis for creating nested generic structures. Array type
literal length parameters are generalized to accept a const type parameter, as seen in the
matrix example, to fit into this new definition.

How about an expression like N + 1 or 2 * N? Should we allow them as const type
arguments? The question can be phrased as: is an expression containing a const type
parameter and constant operations (i.e. ones that can be computed at compile time, if we
substitute the type parameter for a concrete integer), a constant expression? Going forwards,
when the answer to the above questions is “no”, it will be referred to as the conservative
approach, whereas a “yes” answer will be referred to as the liberal approach.

Constant expressions evaluate to constant integers, of which non-negative ones can be
used as const type arguments. This brings us to our first problem, not all constant expres-
sions yield non-negative integers, and we cannot tell what the sign of a “constant” expression
involving a type parameter will be until the user has instantiated a generic type or function.
Go type checks generic functions/types at the declaration site, rather than the call site, so
we need to ensure our approach fits that model.

Consider the signature of a function that returns the head and tail of an array (The const
generics project group, 2021):

func headAndTail[T any, N const](arr [N]T) (T, [N - 1]T) {

// implementation code...

}

Since an array length cannot be negative, it is only valid to pass arrays of size 1 or more to
this function. If the argument array’s length was 0, then N - 1 would evaluate to -1, which
is an invalid array size. Conceptually, we can think of this constraint as a new interface, a
subtype of const:

type constPlus1 interface {

1 | 2 | 3 | 4 | ...

}

This leads us to at least three potential solutions to the above problem. The first would
be to fail the type checking of such a function (at declaration site), since the operation is
not valid for all instantiations of the const interface. Just as underflow can occur when
performing operations that can decrease the value of a numerical type parameter, overflow
could occur if the instantiated type argument is large enough and a constant expression
makes it overflow (i.e. fail to fit into an int type, whose size is platform dependant). This is
where the first potential solution falls short, since overflow could occur with expressions such
as N + 1 or 2 * N, those expressions would also not be allowed by same the argument of
not being valid for all instantiations, and in effect, we’re back to the conservative approach.

The other 2 solutions revolve around constraining the type parameter bound more tightly
(as shown in the constPlus1 interface code). This could be done implicitly: the compiler

23

could detect that the operation is only permitted for numerical type parameter instantiations
greater than 0, and implicitly make the type parameter constraint bounds tighter. I.e. the
function still type checks at the declaration site, however, callers would only be able to pass
in non-zero sized arrays, which can be checked at compile time. Tools such as language
servers could show these tighter constraints to the programmer. The final solution is to
require an explicit tighter constraint, through some sort of new refinement syntax, e.g.:

func headAndTail[T any, N const[1:]](arr [N]T) (T, [N - 1]T) {

// implementation code...

}

which places a lower bound of 1 on the const interface using the well-known slicing
notation.

The downside of the liberal model is that it makes the compiler implementation signif-
icantly more complex, since it needs to determine what (if any) combination of numerical
type parameter values/ranges will type-check, for every possible constant (compile-time) op-
eration (e.g. plus, times, bitwise XOR, type conversion etc.). It can be shown that such
checks could be used to perform computation at compile-time, e.g. to solve SAT formulas
(A. Wagner, 2021), which can undermine Go’s promise of fast compile times, if the program-
mer (accidentally or deliberately) misuses the type system. As such, in practice, the most
reasonable roadmap to implement numerical type parameters in Go would be to start with
the conservative approach. Then, if its usefulness outweighs the complexity that would be
introduced into a language that strives for simplicity, progress to an explicit liberal model.
Finally, if there is demand for it, consider the implicit liberal model, as a type inference
feature, and have tools such as language servers show the inferred bounds to the program-
mer. Due to the complexity of the liberal model, Rust has also opted for the conservative
approach for the time being (The const generics project group, 2021).

Appendix E.1 discusses some more complex scenarios under the liberal approach. Inves-
tigating in full detail the feasibility and safety of the liberal approach is a topic for future
work. The following sections of this work consider the conservative model only.

4.4 Allowed operations on generic arrays

By the conservative approach, any operation on generic arrays must type check for all instan-
tiations of the array. In particular, indexing an array with a constant is checked at compile
time, and since the minimum array length that needs to be supported is 0, no constant is
safe to index into a generic array. The programmer may wish to move this check to runtime,
by first assigning the constant to a non-constant int variable, and then performing the index
operation. The liberal approach could be used to set a lower bound on an array length, to
allow index bound checks on generic arrays to be performed at compile time.

Appendix E.2 discusses the slicing operation, and E.3 discusses how the built-in len

function can be made to work with generically sized arrays.

24

func first[T any, N const](arr [N]T) T {

// not allowed: constant index must be valid for all array lengths

return arr[0]

}

func first[T any, N const](arr [N]T) T {

i := 0

// allowed: non-constant index bounds checks are performed at runtime

return arr[i]

}

func first[T any, N const[1:]](arr [N]T) T {

// allowed & safe: constraint guarantees array has at least 1 element

return arr[0]

}

Figure 9: Indexing operations on generic arrays

4.5 Summary of proposal

Rust’s conservative approach avoids many problems and, as such forms a good starting
point for introducing generically sized arrays and numerical type parameters in Go. The
liberal approach is a topic for future work, as it has the potential to allow for more complex
programs to be checked at compile time.

Constant expressions can be used to instantiate a const type parameter and array
lengths. Lone const type parameters can be used to instantiate const type parameters
and array lengths. Additionally const type parameters can be used as non-const int type
values. More complex expressions involving a combination of type parameters, constant ex-
pressions, and constant operations (such as + or len), yield a non-constant int value, so they
can be assigned to a variable of non-constant int type, but not used to instantiate const
type parameters or array lengths.

25

5 Featherweight Go with Arrays

Featherweight Go is a small, functional, Turing-complete subset of the Go programming
language, introduced by Griesemer et al. (2020) for the purpose of showing how generics can
be added to the language. This section will extend Featherweight Go with arrays (FGA), as
found in Go. In a similar fashion, only a subset of array features are included to keep things
manageable. In particular, slices are excluded. Since FGA is a subset of Go, many constructs
and syntax that are allowed in Go, are disallowed in FGA to keep the rules simpler.

A couple of notes on formal notation: a bar above a term or group of terms denotes a
sequence or a rule to be applied to each element in the sequence (Steele, 2017). A sequence
may contain 0 or more instances of the terms. In actual programs, various delimiters are
required between terms in a sequence. Depending on the construct, this is either a comma or
a semicolon (interchangeable with a newline), but these details are omitted from the formal
rules. The metavariables e and e are considered distinct, i.e. unless stated explicitly, it is
not automatically implied that e ∈ e. A box around a syntactical term means it cannot
appear in a normal user program but can be used internally during reduction. Rules or rule
fragments appearing in grey have been taken directly from the original Featherweight Go
(Griesemer et al., 2020) without any modification. The rules (or rule fragments) in black
show the changes introduced when extending the rules to include arrays.

5.1 FGA Syntax

An FGA program is defined in a single file. The program starts with the package name, and
since we limit the language to a single file, the package must be named main, allowing the
program to be compiled into an executable in regular Go. It is then followed by a sequence
of 0 or more declarations, and finally the main function is required at the end. The main
function consists of a single expression, and to make it compatible with Go, the expression
is assigned to the blank identifier, denoted by an underscore. This makes it so that the Go
compiler does not reject the program because of an unused expression or variable.

Two main types of declarations exist: a type declaration and a method declaration. The
latter is subdivided further into a regular method declaration and an “array set” method
declaration. The reason for having a special syntactical form for methods that set a particular
element of an array (more precisely a copy of an array, due to the value semantics of arrays),
is that FGA is a functional subset of Go and does not support variable assignment in the
general sense. By encapsulating the operation of creating an array copy with a certain
element taking on a new value, FGA is able to maintain its functional property. It also
makes the rules simpler since there is no need to introduce general assignment, yet the
“array set” syntax is fully compatible with Go and will behave as expected.

A type declaration is defined as the keyword type, followed by a declared type name,
followed by a type literal. A “declared” type name can be any identifier as defined by The
Go Programming Language Specification, (2023), except for the predeclared int. In Go, it is
actually legal to redefine predeclared type names, such as the built-in int, however, to keep
things simple FGA does not permit this. That is to say, the only predeclared type name in
FGA is int, for values of integer type. No other primitive types (e.g. bool or string) are
defined in FGA.

26

A type literal can be one of 3 things: a struct literal, an interface literal, or an array
literal. A struct type literal consists of the keyword struct, followed by a sequence of fields
inside curly braces. Each field is a pair of a field identifier and a type name, separated by a
space. A type name can be either an aforementioned declared type name or the predeclared
type name int. The rules specify integer literals as valid type names. However, these are
not allowed in user programs and are only used internally by the reduction and typing rules.

An interface type literal consists of the keyword interface, followed by a sequence of
method specifications inside curly braces. Each method specification consists of a method
name (an identifier) followed by the method signature. A method signature consists of a
sequence of parameters within parenthesis, followed by a type name denoting the return type
of the method. Each parameter is a pair of a variable name (an identifier) and a type name,
separated by a space.

An array type literal consists of an integer literal within square brackets, denoting the
length of the array followed by a type name, denoting the type of the array elements. This
restricts array type literals to a single dimension, i.e. [2][3]int is not allowed. However,
in practice, this is not a concern, as one can define a nested array in two steps, i.e. declaring
the inner array as a type and using that declared type name as the element type of the outer
array.

A method declaration consists of the keyword func, followed by the receiver in parenthe-
ses, followed by a method specification, followed by the method body. The method receiver
is just a single parameter, where its type name refers to a declared value type name. A
value type name is a type name defined in terms of either a struct type literal or an array
type literal. The method body consists of the keyword return, followed by an expression,
all enclosed within curly braces.

An array set method declaration is a special syntactical term in FGA, which is a valid
method in Go. The receiver type refers to a declared array type name, which is a type name
defined in terms of an array literal. The method can have any name (identifier), and its
parameters can be any identifier as long as all the parameters are named uniquely. However,
there are stricter restrictions on the rest of the construct. The return type must match the
receiver type. The first parameter must have a type of int, while the second parameter
may (syntactically) be any type name. The method body is constructed from the parameter
names, where x refers to the array, x1 to the array index, and x2 to the new value to be
assigned to that index. In figure 10, identical metavariables should be understood as identical
syntactical terms in the rule defining array set methods, e.g. where a concrete term appears
for x in one part of the rule, any other occurrence of the metavariable x must be instantiated
with the same concrete term. The same does not apply to other rules in the figure (e.g.
array index consists of two potentially distinct subexpressions). This is the only instance
where, syntactically, two statements are allowed within the method body, as there is no way
in Go to perform an array index assignment and return the array in a single expression.

The expressions that are supported are standard and are described in appendix F.1.

5.2 FGA Reduction

Figure 12 describes the small-step operational semantics of FGA, with auxiliary functions
defined in figure 11. A value is a term that cannot be reduced further, i.e. is the final result

27

Field name f
Method name m
Variable name x
Structure type name tS, uS

Interface type name tI , uI

Array type name tA, uA

Value type name tV , uV ::= tS | tA
Declared type name tD, uD ::= tV | tI
Type name t, u ::= tD | int | n
Method signature M ::= (x t) t
Method specification S ::= mM
Type Literal T ::=

Structure struct {f t}
Interface interface {S}
Array [n]t

Declaration D ::=
Type declaration type tD T
Method declaration func (x tV) mM {return e}
Array set method
declaration func (x tA) m(x1 int, x2 t) tA {x[x1] = x2; return x}

Program P ::= package main; D func main() { = e}

Expression d, e ::=
Integer literal n
Variable x
Method call e.m(e)
Value literal tV {e}
Select e.f
Array index e[e]
Addition e+ e

Figure 10: FGA syntax

28

(type tS struct{f t}) ∈ D

fields(tS) = f t

(func (x tV) m(x t) t {return e}) ∈ D

body(tV .m) = (x : tV , x : t).e

(type tA [n]t) ∈ D

{i ∈ Z | 0 ≤ i < n} = indexBounds(tA)

(func (x tA) m(x1 int, x2 t) tA {x[x1] = x2; return x}) ∈ D

isArraySetMethod(tA.m)

Figure 11: FGA auxiliary functions for reduction rules

of computation. In FGA, a value is either an integer literal or a value literal (struct or
array), whose elements are all values themselves. An expression d reduces to expression e in
a single step (denoted as d → e), if one of the reduction rule templates can be instantiated
with the metaexpression d → e by pattern matching.

The auxiliary predicate isArraySetMethod returns true if and only if the method given by
the type name and method name exists in the sequence of declarations and is syntactically
an array set method, as defined in figure 10. The rule R-Array-Set says that given a method
call expression, where the receiver is an array literal value, the first argument is an integer
literal, and the second argument is a value, evaluates to an array value literal, with the same
elements but for the nth index which is replaced with the value in the second argument of
the method call. This rule can be applied if and only if the method in question is an array
set method and the integer literal n is within the bounds of the array.

The remaining reduction rules are standard and are described in appendix F.2. An
example of the reduction rules being applied to a very simple FGA program can be found
in appendix H.1.

5.3 FGA Typing

Figures 14 and 15 describe the typing rules in FGA, with auxiliary functions defined in figure
13. A term is considered well-typed (or well-formed) when there exists a typing rule that
the term can pattern match against, followed by the ok symbol. The <: symbol denotes
a subtyping or “implements” relation between two types. The metaexpression Γ ⊢ e : t
denotes a 3-tuple relation where an expression e is of type t in the environment Γ, which
maps variables x to types t.

The first set of rules defines the subtyping relation between types. A type is said to be a
subtype of another type in FGA when it implements the latter type. Any type implements
itself (rules <:V <:int, <:n, and implicitly <:I). The methods helper function returns the
set of method specifications (later referred to as a “method set”) defined on a given type
(including array set methods). A type implements an interface if the type’s method set is
a superset of the interface’s method set. By this definition, interfaces can also implement
other interfaces (and themselves).

29

Value v ::= tV {v} | n

Evaluation context E ::=
Hole □
Method call receiver E.m(e)
Method call arguments v.m(v, E, e)
Addition LHS E + e
Addition RHS n+ E

Value literal tV {v, E, e}
Select E.f
Index receiver E[e]
Index argument tA{v}[E]

Reduction d −→ e

r-field
(f t) = fields(tS)

tS{v}.fi −→ vi

r-index
n ∈ indexBounds(tA)

tA{v}[n] −→ vn

r-call
(x : tV , x : t).e = body(type(v).m)

v.m(v) −→ e[x := v, x := v]

r-array-set
n ∈ indexBounds(tA) isArraySetMethod(tA.m)

tA{v}.m(n, v) −→ tA{v}[n := v]

r-addition
n1 + n2 = n

n1 + n2 −→ n

r-context
d −→ e

E[d] −→ E[e]

Figure 12: FGA reduction rules

A type, identified by its name, is considered well-formed when it’s either the predeclared
int type (rule T-Int-Type), or it is the type name of one of the type declarations in the
program (rule T-Named). An array set method is well-formed if the 2nd parameter’s type
is a subtype of the receiver type’s element type and the receiver type is itself a well-formed
array type (rule T-Func-Arrayset).

An array literal expression is well-formed and of the array type that was instantiated, if
the array type is well-formed, the number of elements matches the size of the array (note
that unlike in Go, zero values are not defined in FGA, as such, all elements of an array
must be explicitly instantiated upfront), and all elements’ types are subtypes of the array’s
element type (rule T-Array-Literal).

For reasons that will be discussed when type parameters are introduced, integer literals
are of their own types, e.g. the expression 1 is of type 1 (rule T-Int-Literal). Integer literal
types are subtypes of the int type, e.g. 1 <: int (rule <:int−n). Go does not make such a
distinction (i.e. each integer literal being its own type), however, integer literals (constants)
in Go may be “untyped”, which can be used as subtypes of other numerical types (e.g. int,
byte, int16 etc.). In FGA, integer literals are treated similarly to untyped integer constants
in Go (The Go Programming Language Specification, 2023).

Because of the distinction between constant (literal) and non-constant integer types, there
are two typing rules for an array index expression. In both cases, the array expression must
be well-typed and of an array type, and the array index expression’s type is of the element
type of the array. When the index expression is of the non-constant int type, no other checks
are performed (statically) (rule T-Array-Index). However, when the index expression is of an
integer literal type, an index bounds check is also statically performed via the type system
(rule T-Array-Index-Literal).

30

(type tA [n]t) ∈ D

t = elementType(tA)

(type tA [n]t) ∈ D

n = lenType(tA) methods(int) = {} methods(n) = {}

methods(tV) = {mM | (func (x tV) mM {return e}) ∈ D} ∪
{m(x1 int, x2 t) tV | (func (x tV) m(x1 int, x2 t) tV {x[x1] = x2; return x}) ∈ D}

type tI interface{S} ∈ D

methods(tI) = S

distinct(m)

unique(mM)

ai ̸= aj ∀ai, aj ∈ a, i ̸= j

distinct(a)

tdecls(D) = [tD | (type tD T) ∈ D]

mdecls(D) = [tV .m | (func (x tV) mM {return e}) ∈ D]

notReferenced(tr, int) notReferenced(tr, interface {S})

notReferenced(tr, t)

notReferenced(tr, [n]t)

notReferenced(tr, t) ∀t ∈ f t

notReferenced(tr, struct{f t})

(type tD T) ∈ D tr ̸= tD notReferenced(tr, tD, T)

notReferenced(tr, tD)

Figure 13: FGA auxiliary functions for typing rules

The remainder of the rules are described in appendix F.3. An example of the typing rules
being applied to a very simple FGA program can be found in appendix H.2.

5.4 FGA Properties

An array index expression or an array-set method call expression panics if they contain an
array type tA, and an array index n, where n /∈ indexBounds(tA). An expression e panics if
e = E[d], where E is any evaluation context, and d is an expression that panics.

The progress and preservation properties covered in Featherweight Go apply to FGA and
are defined as follows (Griesemer et al., 2020):

Property 5.1 (Preservation) If ∅ ⊢ d : u and d −→ e then ∅ ⊢ e : t for some t with
t <: u.

Property 5.2 (Progress) If ∅ ⊢ d : u then either d is a value, d −→ e for some e, or d
panics.

31

Implements, well-formed type t <: u t ok

<:V

tV <: tV

<:int

int <: int

<:n

n <: n

<:int−n

n <: int

<:I
methods(t) ⊇ methods(tI)

t <: tI

t-int-type

int ok

t-named
(type t T) ∈ D

t ok

Well-formed method specifications and type literals S ok T ok

t-array
n ≥ 0 t ok

[n]t ok

t-specification
distinct(x) t ok t ok

m(x t) t ok

t-struct
distinct(f) t ok

struct {f t} ok

t-interface
unique(S) S ok

interface {S} ok

Well-formed declarations D ok

t-type
T ok notReferenced(t, T)

type t T ok

t-func
distinct(x, x)

tV ok m(x t) u ok x : tV , x : t ⊢ e : t t <: u

func (x tV) m(x t) u {return e} ok

t-func-arrayset
u = elementType(tA) t <: u tA ok

func (x tA) m(x1 int, x2 t) tA {x[x1] = x2; return x}

Figure 14: FGA typing rules (1 of 2)

32

Expressions Γ ⊢ e : t

t-var
(x : t) ∈ Γ

Γ ⊢ x : t

t-call
Γ ⊢ e : t Γ ⊢ e : t (m(x u) u) ∈ methods(t) t <: u

Γ ⊢ e.m(e) : u

t-struct-literal
tS ok Γ ⊢ e : t (f u) = fields(tS) t <: u

Γ ⊢ tS{e} : tS

t-field
Γ ⊢ e : tS (f u) = fields(tS)

Γ ⊢ e.fi : ui

t-array-literal
tA ok |e| = lenType(tA) Γ ⊢ e : t u = elementType(tA) t <: u

Γ ⊢ tA{e} : tA

t-int-literal

Γ ⊢ n : n

t-array-index
Γ ⊢ e1 : tA Γ ⊢ e2 : int t = elementType(tA)

Γ ⊢ e1[e2] : t

t-array-index-literal
Γ ⊢ e1 : tA Γ ⊢ e2 : n 0 ≤ n < lenType(tA) t = elementType(tA)

Γ ⊢ e1[e2] : t

t-int-literal-addition
Γ ⊢ e1 : n1 Γ ⊢ e2 : n2 n1 + n2 = n

Γ ⊢ e1 + e2 : n

t-int-addition
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 t1 <: int t2 <: int int ∈ {t1, t2}

Γ ⊢ e1 + e2 : int

Programs P ok

t-prog
distinct(tdecls(D), int) distinct(mdecls(D)) D ok ∅ ⊢ e : t

package main; D func main() { = e} ok

Figure 15: FGA typing rules (2 of 2)

33

6 Featherweight Generic Go with Arrays

Featherweight Generic Go (FGG) is an extension to Featherweight Go that introduces gener-
ics via type parameters, formalised in (Griesemer et al., 2020). This section adapts FGG
with the syntax and restrictions introduced in the Type Parameters Proposal and ultimately
implemented in Go v1.18 (Taylor and Griesemer, 2021), and extends it with arrays and nu-
merical type parameters that can be used to create generic array types, referred to as FGGA
going forwards.

Rules or rule fragments that remain unchanged from FGA are shown in grey, whereas
new rules or rule modifications are shown in black.

6.1 FGGA Syntax

Syntactically, a type is now one of 4 things — it is either a type parameter, which is just
an identifier, an integer literal, the keyword const (which cannot be used as a regular type
in user programs) or a named type. Named types are defined in terms of type names from
FGA, with the addition of a sequence of zero or more type arguments enclosed in square
brackets, following the type name. The type arguments are themselves types. While it’s not
explicitly stated in figure 16, when there are no type arguments, the square brackets must
be omitted, to ensure compatibility with Go. The consequence of this is that syntactically,
there is no way to differentiate between a type parameter and a named type with no type
arguments. A value type is a named type whose base type name (i.e. outermost type name)
is a value type name. The situation is analogous for interface types. An integer-like type is
either an integer literal, or a type parameter, and can be used as the size of an array type
literal. A bound is used to restrict the set of type arguments that can be used in place of
a type parameter. A type parameter constraint Φ is used to define a type parameter along
with its constraint (bound).

Method signatures, struct type literals, array type literals and value literals are updated
to used types in the place of type names. Type declarations now have a sequence of type
parameter constraints following the type name, that are required when instantiating the
type. Similarly to type arguments, a type with no type parameters must omit the square
brackets.

Unlike in FGG, method receivers are invariant, as such, there is no need to repeat the
type parameter constraints on the receiver type parameters. Instead, a simple type param-
eter sequence is used. In Go, these type parameters can be named differently from type
parameters in the type declaration, since the order of the parameters is sufficient to identify
them, however, to keep the rules simpler, in FGGA the type parameter names must match
exactly with the ones specified in the type declaration. Another feature omitted from the
current implementation of generics in Go, but present in FGG, are method-specific type
parameters. In order to be compatible with the current implementation, these constructs
are also omitted from FGGA.

34

Field name f
Method name m
Variable name x
Structure type name tS, uS

Interface type name tI , uI

Array type name tA, uA

Value type name tV , uV ::= tS | tA
Declared type name tD, uD ::= tV | tI
Type name t, u ::= tD | int
Type parameter α
Method signature M ::= (x τ) τ
Method specification S ::= mM
Type Literal T ::=

Structure struct {f τ}
Interface interface {S}
Array [τn]τ

Declaration D ::=
Type declaration type t[Φ] T
Method declaration func (x tV [α]) mM {return e}
Array set method
declaration func (x tA[α]) m(x1 int, x2 τ) tA[α] {x[x1] = x2; return x}

Program P ::= package main; D func main() { = e}

Type τ, σ ::=
Type parameter α
Named type t[τ]
Integer literal n

Constant const
Value type τV , σV ::= tV [τ]
Interface type τI , σI ::= tI [τ]
Integer-like type τn, σn ::= α | n
Bound γ ::= τI | const
Type parameter
constraint Φ ::= α γ
Expression e ::=
Integer literal n
Variable x
Method call e.m(e)
Value literal τV {e}
Select e.f
Array index e[e]
Addition e+ e

Figure 16: FGGA syntax

35

(α γ) = Φ η = (α := τ)

(Φ := τ) = η

(type tS[Φ] struct {f τ}) ∈ D η = (Φ := σ)

fields(tS[σ]) = (f τ)JηK

(func (x tV [α]) m(x τ) τ {return e}) ∈ D θ = (α := σ)

body(tV [σ].m) = (x : tV [σ], x : τ).eJθK

(type tA[Φ] [n]τ) ∈ D τA = tA[τ]

{i ∈ Z | 0 ≤ i < n} = indexBounds(τA)

(type tA[Φ] [αi]τ) ∈ D (α γ) = Φ τA = tA[τ] n = τi

{i ∈ Z | 0 ≤ i < n} = indexBounds(τA)

(func (x tA[α]) m(x1 int, x2 τ) tA[α] {x[x1] = x2; return x}) ∈ D τA = tA[τ]

isArraySetMethod(τA.m)

Figure 17: FGGA auxiliary functions for reduction rules

6.2 FGGA Reduction

The reduction rules for FGGA are nigh identical to the ones found in FGA, with the only
notable difference being that type names t are replaced with types τ .

More interesting differences occur in the auxiliary functions. In FGA, indexBounds took
a type name and performed a simple lookup in the type declaration to extract the size of
the array. In FGGA, there are two cases of the indexBounds function. When the size of
the array type is an integer literal, then the bounds are calculated in the same way as in
FGA, based on a lookup of the named type declaration of the array type. If however, the
array type declaration has a type parameter in place of the array size, then the bounds are
calculated from the integer literal type argument in the array type that corresponds to the
type parameter used as the array size in the declaration. The correspondence is determined
by matching on the same position in the sequence of type parameter constraints and the
sequence of type arguments.

The body auxiliary function has also been updated to perform substitution of method type
parameters with the receiver’s type arguments within the method expression. A map within
a pair of double square brackets applied to a term (e.g. eJθK in the body function) denotes a
substitution application in this and following rules. The type arguments are mapped to the
type parameters based on their respective positions.

Similarly, the fields auxiliary function has been updated to perform a type parameter
substitution with type arguments on the resulting struct fields. This is performed analogously
to how it’s done in the body function, except that type parameters are extracted from the
type parameter constraints in the struct type declaration.

36

Value v ::= τV {v} | n

Evaluation context E ::=
Hole □
Method call receiver E.m(e)
Method call arguments v.m(v, E, e)
Addition LHS E + e
Addition RHS n+ E

Value literal τV {v, E, e}
Select E.f
Index receiver E[e]
Index argument τA{v}[E]

Reduction d −→ e

r-field
(f τ) = fields(τS)

τS{v}.fi −→ vi

r-index
n ∈ indexBounds(τA)

τA{v}[n] −→ vn

r-call
(x : τV , x : τ).e = body(type(v).m)

v.m(v) −→ e[x := v, x := v]

r-array-set
n ∈ indexBounds(τA) isArraySetMethod(τA.m)

τA{v}.m(n, v) −→ τA{v}[n := v]

r-addition
n1 + n2 = n

n1 + n2 −→ n

r-context
d −→ e

E[d] −→ E[e]

Figure 18: FGGA reduction rules

6.3 FGGA Typing

∆ is defined as a typing environment mapping type parameters α to their bounds γ. Type
parameter constraint sequences Φ may implicitly coerce to type environments. As before in
FGA, Γ is defined as an environment mapping variables x to types τ .

The “implements” relation now includes a typing environment ∆. As before, all types
implement themselves (rules <:Param, <:V , <:int, <:const and <:n), and integer literal types
implement the int type (rule <:int−n). Non-negative integer literals now also implement
the const type (rule <:const−n), so that they can be used as type arguments, where the
bound of the type parameter is const. Since the use case of numerical type parameters is
to generically size arrays, and arrays cannot be of a negative size, negative integers do not
implement const.

The methods∆ auxiliary now also accepts a typing environment as input (denoted by a
subscript ∆), as a type parameter bound lookup may be necessary to retrieve the methods
of a type. For a named value type tV [τ] methods∆ returns the set of method specifications
of the base value type tV , with type substitutions performed on them. E.g. if the declared
value type Foo with a type parameter T has a method with the specification f(x T) T, then
methods∆(Foo[int]), where ∆ is any typing environment (as it is not relevant in the case
of looking up methods of a named value type), would return {(f(x int) int)}. The impli-
cation of this is that one instantiation of a generic type could implement a certain interface,
while another could not, depending on the type arguments. A methods∆ lookup on an inter-
face has similarly been updated to return a type-substituted method set. Additionally, the
method set of a type parameter α is equal to the method set of its bound γ, as specified in
the typing environment ∆.

37

The integer literal type can now appear in user programs, although with restrictions as
to where they can be used. They can only be used as type arguments in a named type and
as the size parameter of an array type literal but not e.g. as a standalone type of a variable
or a return type. Const type parameters (i.e. those that are bound by const) have the
exact same restrictions as integer literal types. To distinguish between these two kinds of
user-program types, the isConst∆ predicate was created, which simply checks if the type is a
subtype of const. Because both const type arguments and array sizes must be non-negative,
we can also restrict all integer literal types to be non-negative (rule T-N-Type).

A type parameter α is considered well-typed if it appears in the typing environment ∆
(rule T-Param). The rule T-Named has been updated to type-check each type argument
in the named type, recursively applying one of “well-formed type” rules (∆ ⊢ τ ok) on
each argument, and checking whether each argument satisfies the type parameter bound via
the (Φ :=∆ τ) lookup. The lookup differs from the regular type substitution map lookup
(denoted without the subscript ∆), that it additionally checks the bounds of each type
argument via the subtyping relation, which itself is done via a type substitution on the type
parameters as well as the bounds, because bounds may refer to other type parameters in
the type parameter constraints sequence. Not only must the type arguments implement the
type-substituted bounds of their corresponding type parameters, but they must also have
an equal “const-ness”, i.e. either both the argument and bound return true for isConst ,
or they both return false. The need for this check can be illustrated with the following
example: 2 <: any holds, but 2 cannot be used as a variable type, and so it cannot be
used to instantiate a type parameter bound by any. This is enforced in the rule because
isConst∆(2) ̸= isConst∆(any). Both the type-checking and non type-checking lookups yield
a map from type parameters to types, denoted by η.

The rule T-Formal specifies what it means for type parameter constraint sequences (i.e.
the formal type parameters found in a type declaration) to be well typed. All type param-
eters must be distinct, and their bounds must be well-typed, in the context of the typing
environment that is created from the type parameter constraints that are being checked.
This environment is necessary for recursively defined type parameter bounds, e.g. if Eq is
an interface with one type parameter, then we can define another type Foo with a type
parameter α bound by Eq[α], i.e. the type parameter is referenced within its own bound.

There is a restriction in the current implementation of Go, that FGGA also adheres to,
and that is that no type in any type parameter bound can refer to the type being declared
(directly or indirectly). E.g. the interface type declaration Eq cannot have a type parameter
α bound by Eq[α] itself (The Go Programming Language Specification, 2023).

The check for this restriction is performed via the notReferenced auxiliary in the T-Type
rule for each type parameter bound γ. notReferenced is defined recursively, and described
in appendix G.1.1.

An array size can now be any valid const type, and the element type must be a valid
non-const type, evaluated in the typing environment Φ. The lenType auxiliary now has two
cases. One as before: when the array size is an integer literal (i.e. non-generic). The other
is the generic case, where the array size is a type parameter, in which case lentype returns
the type argument that is used to instantiate the array size type parameter (by matching
on the type parameter position). Array literals in FGGA can only be constructed when the
lenType is an integer literal type — either when the array length type is non-generic, or

38

has been instantiated with an integer literal (rule T-Array-Literal). When the array size is
instantiated with a type parameter, the size is unknown, hence it is not safe to assume the
array can hold any elements (e.g. it could be instantiated later with a size of 0). In practice,
Go’s zero values could be used to instantiate generically sized arrays, but since FGGA does
not support them, even empty generic array initialisation is not allowed.

It is worth noting that generic, non-instantiated arrays (i.e. where lenType does not
return an integer literal) can only be indexed using a non-constant integer of type int. This
is to stay consistent with current expectations: indexing into an array using a constant integer
literal is only allowed to fail at compile-time. In line with the Go spirit of type-checking
generic code at the declaration site, as opposed to the call site, indexing into generic arrays
using integer literals is not allowed in FGGA, even if the index would remain within bounds
for all array instantiations in the scope of the current program. The programmer may still
achieve such behaviour by explicitly assigning the integer literal to a non-const int variable
and then performing an index operation.

6.4 FGGA Properties

As before, an array index expression or an array-set method call expression panics if they
contain an array type τA, and an array index n, where n /∈ indexBounds(τA). An expression
e panics if e = E[d], where E is any evaluation context, and d is an expression that panics.

The progress and preservation properties covered in Featherweight Go apply to FGGA
and are defined as follows (Griesemer et al., 2020):

Property 6.1 (Preservation) If ∅; ∅ ⊢ d : σ and d −→ e then ∅; ∅ ⊢ e : τ for some τ with
τ <: σ.

Property 6.2 (Progress) If ∅; ∅ ⊢ d : σ then either d is a value, d −→ e for some e, or
d panics.

39

(type tA[Φ] [τn]τ) ∈ D

τ = elementType(tA)

τA = tA[τ] (α γ) = Φ (type tA[Φ] [αi]τ) ∈ D

τi = lenType(τA)

τA = tA[τ] (type tA[Φ] [n]τ) ∈ D

n = lenType(τA)

(type t[Φ] T) ∈ D

Φ = typeParams(t)

∆ ⊢ τ <: const

isConst∆(τ)

(α γ) = Φ η = (Φ := τ) ∆ ⊢ (α <: γ)JηK isConst∆(α) = isConst∆(γ)JηK
(Φ :=∆ τ) = η

notReferencedα(tr, n) notReferencedα(tr, const) notReferencedα(tr, α)

notReferencedα(tr, τ) tr ̸= t (α γ) = typeParams(t) notReferencedα(tr, t, γ)

notReferencedα(tr, t[τ])

notReferenced(tr, α) notReferenced(tr, int) notReferenced(tr, interface {S})

notReferenced(tr, τ)

notReferenced(tr, [τn]τ)

notReferenced(tr, τ) ∀τ ∈ f τ

notReferenced(tr, struct{f τ})

(type tD[Φ] T) ∈ D tr ̸= tD η = (Φ := τ) notReferenced(tr, tD, T JηK)
notReferenced(tr, tD[τ])

methods∆(int) = {} methods∆(n) = {}

η = (Φ := τ) Φ = typeParams(tV)

methods∆(tV [τ]) = {(mM)JηK | (func (x tV [α]) mM {return e}) ∈ D} ∪
{m(x1 int, x2 τJηK) tV [τ] | (func (x tV [α]) m(x1 int, x2 τ) tV [α] {x[x1] = x2; return x}) ∈ D}

type tI [Φ] interface {S} ∈ D η = (Φ := τ)

methods∆(tI [τ]) = SJηK
(α : γ) ∈ ∆

methods∆(α) = methods∆(γ)

distinct(m)

unique(mM)

ai ̸= aj ∀ai, aj ∈ a, i ̸= j

distinct(a)
tdecls(D) = [tD | (type tD[Φ] T) ∈ D]

mdecls(D) = [tV .m | (func (x tV [α]) mM {return e}) ∈ D]

Figure 19: FGG auxiliary functions for typing with arrays

40

Implements ∆ ⊢ τ <: σ

<:Param

∆ ⊢ α <: α

<:V

∆ ⊢ τV <: τV

<:int

∆ ⊢ int <: int

<:const

∆ ⊢ const <: const

<:n

∆ ⊢ n <: n

<:int−n

∆ ⊢ n <: int

<:I
methods∆(τ) ⊇ methods∆(τ I)

∆ ⊢ τ <: τI

<:const−n

n ≥ 0

∆ ⊢ n <: const

<:const−Param

(α : const) ∈ ∆

∆ ⊢ α <: const

Well-formed type ∆ ⊢ τ ok

t-n-type
n ≥ 0

∆ ⊢ n ok

t-int-type

∆ ⊢ int ok

t-param
(α : γ) ∈ ∆

∆ ⊢ α ok

t-named
∆ ⊢ τ ok (type t[Φ] T) ∈ D η = (Φ :=∆ τ)

∆ ⊢ t[τ] ok

Well-formed type formals ∆ ⊢ const ok Φ ok

t-const

∆ ⊢ const ok

t-formal
(α γ) = Φ distinct(α) Φ ⊢ γ ok

Φ ok

Well-formed method specifications and type literals Φ ⊢ S ok Φ ⊢ T ok

t-specification

distinct(x) Φ ⊢ τ ok Φ ⊢ τ ok ¬isConstΦ(τ) ¬isConstΦ(τ)
Φ ⊢ m(x τ) τ ok

t-struct

distinct(f) Φ ⊢ τ ok ¬isConstΦ(τ)
Φ ⊢ struct {f τ} ok

t-interface
unique(S) Φ ⊢ S ok

Φ ⊢ interface {S}

t-array
Φ ⊢ τn ok isConstΦ(τn) Φ ⊢ τ ok ¬isConstΦ(τ)

Φ ⊢ [τn]τ ok

Figure 20: FGGA typing rules (1 of 3)

41

Well-formed declarations D ok

t-type

Φ ok Φ = (α γ) notReferencedα(t, γ) Φ ⊢ T ok notReferenced(t, T)

type t[Φ] T ok

t-func
distinct(x, x) Φ = typeParams(tV)

(α γ) = Φ Φ ⊢ m(x τ) σ ok Φ;x : tV [α], x : τ ⊢ e : τ Φ ⊢ τ <: σ

func (x tV [α]) m(x τ) σ {return e} ok

t-func-arrayset
σ = elementType(tA) Φ = typeParams(tA) (α γ) = Φ Φ ⊢ τ <: σ

func (x tA[α]) m(x1 int, x2 τ) tA[α] {x[x1] = x2; return x}

Figure 21: FGGA typing rules (2 of 3)

42

Expressions ∆; Γ ⊢ e : τ

t-int-literal

∆; Γ ⊢ n : n

t-var
(x : τ) ∈ Γ

∆; Γ ⊢ x : τ

t-call
∆; Γ ⊢ e : τ ∆; Γ ⊢ e : τ (m(x σ) σ) ∈ methods∆(τ) ∆ ⊢ τ <: σ

∆; Γ ⊢ e.m(e) : σ

t-array-literal
∆ ⊢ τA ok

Φ = typeParams(tA) τA = tA[σ] η = (Φ := σ) σ = elementType(tA)JηK
lenType(τA) <: n |e| = lenType(τA) ∆; Γ ⊢ e : τ ∆ ⊢ τ <: σ

∆; Γ ⊢ τA{e} : τA

t-array-index
Φ = typeParams(tA) τA = tA[τ]

η = (Φ := τ) τ = elementType(tA)JηK ∆; Γ ⊢ e1 : τA ∆; Γ ⊢ e2 : int

∆; Γ ⊢ e1[e2] : τ

t-array-index-literal
Φ = typeParams(tA) τA = tA[τ] η = (Φ := τ) τ = elementType(tA)JηK
∆; Γ ⊢ e1 : τA ∆; Γ ⊢ e2 : n lenType(τA) <: nτ 0 ≤ n < lenType(τA)

∆; Γ ⊢ e1[e2] : τ

t-struct-literal
∆ ⊢ τS ok ∆; Γ ⊢ e : τ (f σ) = fields(τS) ∆ ⊢ τ <: σ

∆; Γ ⊢ τS{e} : τS

t-field
∆; Γ ⊢ e : τS (f τ) = fields(τS)

∆; Γ ⊢ e.fi : τ i

t-int-literal-addition
∆; Γ ⊢ e2 : n2 ∆; Γ ⊢ e1 : n1 n1 + n2 = n

∆; Γ ⊢ e1 + e2 : n

t-int-addition
∆; Γ ⊢ e1 : τ 1 ∆; Γ ⊢ e2 : τ 2 τ 1 <: int τ 2 <: int int ∈ {τ 1, τ 2}

∆; Γ ⊢ e1 + e2 : int

Programs P ok

t-prog
distinct(tdecls(D), int) distinct(mdecls(D)) D ok ∅; ∅ ⊢ e : τ

package main; D func main() { = e} ok

Figure 22: FGGA typing rules (3 of 3)

43

7 Monormorphisation from FGGA to Go

Monormorphisation is an implementation technique for generics (parametric polymorphism)
which involves translating generic code into non-generic code. For every instantiation of
a generic type, a non-generic type is produced in the output monomorphised program.
This approach allows for zero-cost abstractions, as there is no runtime penalty for exe-
cuting monomorphised code as opposed to non-generic code. Monormorphisation is used by
languages such as Rust to implement generics (Rust Compiler Development Guide, 2023).
Monormorphisation was first formalised in Featherweight Go (Griesemer et al., 2020).

There are, however, certain limitations with this approach. Monormorphisation can
lead to an explosion in the output code size, and not all programs can be monomorphised
(Griesemer et al., 2020). Other approaches have been adopted by many languages that
support parametric polymorphism. Java uses type erasure (Gosling et al., 2023), C# uses
a hybrid of monomorphisation at runtime (as opposed to the traditional compile-time) and
code sharing (Kennedy and Syme, 2001), and Go uses a hybrid of monormorphisation and
dictionary passing (Scales and Randall, 2022).

Monormorphisation is appropriate for the restricted use of numerical type parameters in
FGGA, since output code size explosion is not an issue — for every concrete type argument
n, at most 1 output type will be produced for every type depending on the aforementioned
parameter n (directly or indirectly).

This section presents a formalisation of monomorphisation from FGGA to Go, based on
Featherweight Go (Griesemer et al., 2020). Because regular type parameters are now part
of Go, they are output as is, and only numerical type parameters are “eliminated” in the
monomorphisation process.

7.1 Formalisation

∆ is an environment mapping numerical type parameters αn (i.e. those bound by const) to
integer literals n.

The monomorphisation process consists of two stages — type collection and type trans-
lation. The type collection phase begins by collecting all the referenced named types in the
main expression. The types are collected into the set ω, with one entry for every (type name,
sequence of integers) pair. The sequence of integers in the pair is the named type’s type
argument list, with all non integer-value arguments removed.

After the initial collection, we apply the function G on ω, which collects further types
from type declarations (T-closure) and methods (M-closure and A-closure) of the types in
ω.

This process is repeated, applying G to the output of the previous G application until
the fixed point of G is reached, i.e. when applying G produces an output that is the same
as its input. This notion is captured in the I-Prog rule, where Ω is the fixed point.

Because only referenced types are collected, a side effect of monomorphisation is that
any unused types are eliminated. This makes sense, because in general, if a generic type is
never instantiated, we don’t have any candidates it could monomorphise down to.

The second phase translates the main expression, and the collected types in Ω into valid
Go code. The main task of this phase is to move all numerical type arguments from the

44

collected types into the names of the named types (rule M-Named), and remove any numer-
ical type parameters or arguments from type parameter/argument lists while preserving any
non-numerical type parameters/arguments (rules M-Named, M-α and M-Constraints). The
remainder of the rules either recursively apply type translation to their components or are
base cases that require no translation at all.

The formal rules describe the process in two distinct stages, whereas the implementation
does both in a single stage (translating as it collects types). All the information needed
to translate a term can be derived from the result of type collection on that term. E.g.
given ∆ = ∅ the expression e = Arr[2, int]{1, 2}, we know it produces ω = {Arr[2]} and
translates to e† = ⟨Arr, 2⟩[int]{1, 2}, where ⟨t, n⟩ signifies the output type name. In an
implementation, the name should be generated such that ideally it doesn’t conflict with any
other type name that the programmer might declare. Additionally, we assume the program
has already been type-checked before being fed into the monomorphiser (the implemenation
should type-check before monomorphising).

7.2 Monormorphisation properties

Any well-typed FGGA program P can be monomorphised into P †.

Property 7.1 (Totality) P ok =⇒ P 7→ P †

Any well-typed FGGA program P is well-typed after monomorphisation, both in FGGA
and in Go.

Property 7.2 (Soundess) P ok =⇒ P † ok

Any monomorphised program P † has a one-to-one correspondence in behaviour (reduc-
tion equivalence) to the original program P (Griesemer et al., 2020). I.e. executing program
P one step and then monomorphising the resulting program, is equivalent to monomorphis-
ing program P to P † and executing P † one step, modulo dead-type elimination. P †

0 reduces

to P
A
1 — denoting the program contains dead types, which we can eliminate by applying

the monomorphisation procedure P
A
1 7→ P †

1 . Figure 25 visualises this correspondence.

Property 7.3 (Bisimulation)

P0 7→ P †
0 P0 −→ P1 P †

0 −→ P
A
1 P

A
1 7→ P †

1

P1 7→ P †
1

P −→ P ′

d −→ e

package main; D func main() { = d} −→ package main; D func main() { = e}

45

Type-instance sets ω,Ω

ω,Ω range over sets containing elements of the form t[n]

Expressions ∆ ⊢ e ▶ ω

I-int-literal

∆ ⊢ n ▶ ∅

I-var

∆ ⊢ x ▶ ∅

I-literal
∆ ⊢ tV [τ] ▶ ωτ ∆ ⊢ e ▶ ω

∆ ⊢ tV [τ]{e} ▶ ωτ ∪ ω

I-field
∆ ⊢ e ▶ ω

∆ ⊢ e.f ▶ ω

I-index
∆ ⊢ e ▶ ω ∆ ⊢ e′ ▶ ω′

∆ ⊢ e[e′] ▶ ω ∪ ω′

I-call
∆ ⊢ e ▶ ω ∆ ⊢ e ▶ ω

∆ ⊢ e.m(e) ▶ ω ∪ ω

I-add
∆ ⊢ e ▶ ω ∆ ⊢ e′ ▶ ω′

∆ ⊢ e+ e′ ▶ ω ∪ ω′

Method specifications and type literals ∆ ⊢ S ▶ ω ∆ ⊢ T ▶ ω

I-specification
∆ ⊢ τ ▶ ω ∆ ⊢ τ ▶ ω

∆ ⊢ m(x τ) τ ▶ ω ∪ ω

I-struct
∆ ⊢ τ ▶ ω

∆ ⊢ struct {f τ} ▶ ω

I-array
∆ ⊢ τ ▶ ω

∆ ⊢ [τn]τ ▶ ω

I-interface
∆ ⊢ S ▶ ω

∆ ⊢ interface {S} ▶ ω

Types ∆ ⊢ τ ▶ ω

I-int

∆ ⊢ int ▶ ∅

I-n

∆ ⊢ n ▶ ∅

I-α

∆ ⊢ α ▶ ∅

I-const

∆ ⊢ const ▶ ∅

I-named
τ ▶ ωτ

∆ ⊢ t[τ] ▶ {instance(t[τ]J∆K)} ∪ ωτ

Programs P ▶ Ω

I-prog
∅ ⊢ e ▶ ω Ω = lim

n→∞
Gn(ω)

package main; D func main() { = e} ▶ Ω

46

Auxiliary functions

n = n : n ∈ τ

instance(t[τ]) = t[n]

αn = α : α const ∈ Φ

(Φ := n) = (αn := n)

G(ω) = T-closure(ω) ∪M-closure(ω) ∪ A-closure(ω)

T-closure(ω) =
⋃{

ω′ ∪ ω′′

∣∣∣∣∣ t[n] ∈ ω, (type t[Φ] T) ∈ D, Φ = (α γ),

(Φ := n) ⊢ γ ▶ ω′, (Φ := n) ⊢ T ▶ ω′′

}

M-closure(ω) =

⋃{
ω′ ∪ ω′′

∣∣∣∣ tV [n] ∈ ω, (func (x tV [α]) mM {return e}) ∈ D,
Φ = typeParams(tV), (Φ := n) ⊢ mM ▶ ω′, (Φ := n) ⊢ e ▶ ω′′

}
A-closure(ω) =

⋃{
ω′

∣∣∣∣ tV [n] ∈ ω, Φ = typeParams(tV), (Φ := n) ⊢ τ ▶ ω′,
(func (x tV [α]) m(x1 int, x2 τ) tV [α] {x[x1] = x2; return x}) ∈ D

}

Figure 23: Type collection phase of FGGA to Go monormorphisation

47

Expressions ∆ ⊢ e 7→ e†

m-int-literal

∆ ⊢ n 7→ n

m-var

∆ ⊢ x 7→ x

m-literal

∆ ⊢ τV 7→ τ †V ∆ ⊢ e 7→ e†

∆ ⊢ τV {e} 7→ τ †V {e†}

m-field
∆ ⊢ e 7→ e†

∆ ⊢ e.f 7→ e†.f

m-index
∆ ⊢ e 7→ e† ∆ ⊢ e′ 7→ e′†

∆ ⊢ e[e′] 7→ e†[e′†]

m-call

∆ ⊢ e 7→ e† ∆ ⊢ e 7→ e†

∆ ⊢ e.m(e) 7→ e†.m(e†)

m-add
∆ ⊢ e 7→ e† ∆ ⊢ e′ 7→ e′†

∆ ⊢ e+ e′ 7→ e† + e′†

Method signatures and type literals ∆ ⊢ M 7→ M † ∆ ⊢ T 7→ T †

m-signature

∆ ⊢ τ 7→ τ † ∆ ⊢ τ 7→ τ †

∆ ⊢ (x τ) τ 7→ (x τ †) τ †

m-struct

∆ ⊢ τ 7→ τ †

∆ ⊢ struct {f τ} 7→ struct {f τ †}

m-array
∆ ⊢ τn 7→ τ †n ∆ ⊢ τ 7→ τ †

∆ ⊢ [τn]τ 7→ [τ †n]τ
†

m-interface

∆ ⊢ M 7→ M †

∆ ⊢ interface {mM} 7→ interface {mM †}

Types ∆ ⊢ τ 7→ τ †

m-int

∆ ⊢ int 7→ int

m-n

∆ ⊢ n 7→ n

m-α

∆ ⊢ α 7→ αJ∆K

m-named

∆ ⊢ τ 7→ τ † n = n : n ∈ τ † τ †c = τ : (τ ∈ τ †) ∧ (τ /∈ n)

∆ ⊢ t[τ] 7→ ⟨t, n⟩[τ †c]

Type parameter constraints ∆ ⊢ Φ 7→ Φ
†

m-constraints

∆ ⊢ γ 7→ γ† Φ
†
= (α γ†) : ((α γ) ∈ Φ) ∧ (γ ̸= const)

∆ ⊢ Φ 7→ Φ
†

48

Program P 7→ P †

m-program
package main; D func main() { = e} ▶ Ω ∅ ⊢ e 7→ e†

package main; D func main() { = e} 7→ package main; D(Ω) func main() { = e†}

Auxiliary functions

Φ = (α γ) αc = α : (α ∈ α) ∧ ((α const) /∈ Φ)

Φ := αc

D(Ω) = DT (Ω) ∪ DM(Ω) ∪ DA(Ω)

DT (Ω) ={
t[n] ∈ Ω (type t[Φ] T) ∈ D (Φ := n) ⊢ Φ 7→ Φ

†
(Φ := n) ⊢ T 7→ T †

type ⟨t, n⟩[Φ†
] T †

}

DM(Ω) =
tV [n] ∈ Ω (func (x tV [α]) mM {return e}) ∈ D

Φ = typeParams(tV) Φ := αc (Φ := n) ⊢ M 7→ M † (Φ := n) ⊢ e 7→ e†

func(x ⟨tV , n⟩[αc]) mM † {return e†}

DA(Ω) =

tV [n] ∈ Ω (func (x tV [α]) m(x1 int, x2 τ) tV [α] {x[x1] = x2; return x}) ∈ D
Φ = typeParams(tV) Φ := αc (Φ := n) ⊢ τ 7→ τ †

func (x ⟨tV , n⟩[αc]) m(x1 int, x2 τ †) ⟨tV , n⟩[αc] {x[x1] = x2; return x}

Figure 24: Translation phase of FGGA to Go monormorphisation

P †
0 P

A
1

P †
1

... P
A
n

P †
n

P0 P1
... Pn

Figure 25: Bisimulation. A solid arrow indicates a program reduction step. A dashed arrow
indicates monormorphisation of a program.

49

8 Implementation

As part of this work, two interpreters were implemented, one for FGA and one for FGGA.
In addition, a monomorphiser was implemented translating FGGA to Go. The output of the
monomorphiser is a valid subset of FGGA, so it can be interpreted by the FGGA interpreter
as well as compiled by the official Go compiler.

One of the aims of building the interpreters was to test the formal syntax, reduction and
typing rules defined in sections 5 and 6, and amend them when inconsistencies or issues arose.
The aim of the monomorphiser was to prototype a translation from const-generic Go code to
regular Go code, which is a useful first step to introducing this feature into the mainstream
compiler. One could also extend the monomorphiser to support a proper superset of Go,
which would allow developers to use generically sized arrays in their source code, and use the
monomorphiser as the first step of the compilation process, the result of which could be fed
directly into the Go compiler. The interpreters also support dynamic (run-time) checking
of the progress and preservation properties as the input program is executed, and terminate
upon reaching a state that was previously seen (i.e. some forms of infinite loops are detected
at run-time).

A similar set of programs was found in the set of artifacts in Featherweight Go (Griese-
mer et al., 2020) — interpreters for the two languages formalised, and a monomorphiser
translating generics (the feature introduced by Featherweight Go) into code that the official
Go compiler at the time could handle.

8.1 Libraries and patterns

ANLTR3 was used to generate the parser, and the interpreters and monomorphiser were
implemented in Go itself.

The visitor pattern was heavily employed throughout the code for operations including
building the abstract syntax tree (AST), preprocessing to remove ambiguity resulting from
the grammar (as discussed in section 6.1), type checking, reduction, monomorphisation, and
various other auxiliary operations. The pattern makes it easy to recursively traverse the
AST and apply the desired operation.

8.2 Testing

The programs were written using test-driven development (TDD), where the test inputs for
most components were small example programs, aimed at testing a single feature or case.

Since under TDD no feature may be implemented without an accompanying test, all
developed features are covered by tests. TDD allows for fearless refactoring, since all fea-
tures are fully covered by tests. Using example programs as test inputs allows for arbitrary
refactoring of the implementation. During development, such a major refactoring was un-
dertaken — namely moving the type parameter substitution (the need for which arising
from the grammar ambiguity) from an ad hoc basis to a separate preprocessing step (i.e. a
separate pass of the AST) before any type checking started.

3ANLTR: https://www.antlr.org/

50

https://www.antlr.org/

Package No. of tests Coverage (%)
ast — 99.6
parsetree 1 97.4
reduction 86 —
typecheck 109 98.6

Figure 26: Test statistics per package for FGA interpreter5

Package No. of tests Coverage (%)
ast — 97.9
auxiliary — 100.0
codegen 20 100.0
monomo 28 99.1
parsetree 2 97.6
preprocessor 1 87.8
reduction 97 96.0
typecheck 230 94.5

Figure 27: Test statistics per package for FGGA interpreter and FGGA to Go monomorphiser

A core part of the implementation was coming up with edge cases, writing tests to
check how the interpreter behaved, and if necessary updating both the formal rules and
implementation to cover the edge case. E.g in FGGA the notReferenced auxiliary had to
be updated to instantiate the type literals it recursively checks, as a result of the described
process.

In fact, following this process, two bugs in the official Go compiler (as of Go 1.22) were
caught, causing the compiler to either crash due to stack overflow, or incorrectly type check
a program (behaviour dependent on input). The two errors were subsequently reported as
issues on Go’s GitHub repository, where exact details can be found4.

4issue 65711 and 65714
5Package test coverage was calculated using a modified cover command from the Go standard library.

The modified code can be found at https://github.com/dawidl022/go/tree/package-coverage. The coverage
is calculated based on all tests, not just ones found in the same package.

51

https://github.com/golang/go/issues/65711
https://github.com/golang/go/issues/65714
https://pkg.go.dev/cmd/cover
https://github.com/dawidl022/go/tree/package-coverage

9 Conclusion

The main contributions this project achieved:

• Formalisation of arrays in a subset of Go (Featherweight Go with Arrays).

• Formalising an extension of FGA with regular and numerical type parameters that can
be used to create arrays of generic sizes.

• Implementing interpreters for the above two languages to dynamically test their safety
properties. The implementation underwent rigorous testing with hundreds of small
example programs.

• Formalising a translation (monomorphisation) of FGGA to regular Go.

• Implementing the formalised monomorphiser.

• Submitting a formal language feature proposal and discussing the addition with the
Go community, including the core Go team.

• Reporting confirmed bugs in actual Go compiler as a result of the rigorous testing.

9.1 Further work

• Formal proofs of progress and preservation properties, similar to the original Feather-
weight Go work (Griesemer et al., 2020).

• Address Go team’s feedback on proposal (Lachowicz, 2024) and come to a consen-
sus with the Go community about the future of the new feature. This may include
investigating the original vision for generics in Go e.g. from the list of omissions in
the accepted proposal (Taylor and Griesemer, 2021) and the older contracts proposal
(Taylor and Griesemer, 2019).

• Go compiler implementation, which includes integrating the design proposed in this
work with Go’s “GCShape stenciling with Dictionaries” approach for generics (Scales
and Randall, 2022).

• Formalise a more expressive technique for genericising over arrays, e.g. by using re-
finements types to specify the range of numerical type parameters accepted by a type.

52

References

Aronson, S., 2017. Const generics [Online]. Available from: https://rust-lang.github.
io/rfcs/2000-const-generics.html [Accessed November 25, 2023].

Barendregt, H.P., 1981. The lambda calculus: its syntax and semantics. New York, N.Y.: Sole
distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.

Bove, A. and Dybjer, P., 2009. Dependent types at work. In: Language engineering and
rigorous software development: international lernet alfa summer school 2008, piriapolis,
uruguay, february 24 - march 1, 2008, revised tutorial lectures [Online]. Ed. by A. Bove,
L.S. Barbosa, A. Pardo, and J.S. Pinto. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp.57–99. Available from: https://doi.org/10.1007/978-3-642-03153-3_2.

Brady, E.C., 2011. Idris —: systems programming meets full dependent types. Proceedings
of the 5th acm workshop on programming languages meets program verification [Online],
PLPV ’11. Austin, Texas, USA: Association for Computing Machinery, pp.43–54. Avail-
able from: https://doi.org/10.1145/1929529.1929536.

Cheney, D., 2013. How to write benchmarks in Go [Online]. Available from: https : / /
eli.thegreenplace.net/2023/common-pitfalls-in-go-benchmarking/ [Accessed
January 19, 2024].

Gamboa, C., Canelas, P., Timperley, C., and Fonseca, A., 2023. Usability-oriented design
of liquid types for java. Proceedings of the 45th international conference on software
engineering [Online], ICSE ’23. Melbourne, Victoria, Australia: IEEE Press, pp.1520–
1532. Available from: https://doi.org/10.1109/ICSE48619.2023.00132.

Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D., and Bierman, G., 2023.
The Java® language specification [Online]. Oracle. Available from: https : / / docs .
oracle.com/javase/specs/jls/se21/html/index.html [Accessed November 21,
2023].

Griesemer, R., Hu, R., Kokke, W., Lange, J., Taylor, I.L., Toninho, B., Wadler, P., and
Yoshida, N., 2020. Featherweight Go. Proc. ACM Program. Lang. [Online], 4(OOPSLA).
Available from: https://doi.org/10.1145/3428217.

Igarashi, A., Pierce, B., and Wadler, P., 1999. Featherweight Java: a minimal core calculus
for Java and GJ. SIGPLAN Not. [Online], 34(10), pp.132–146. Available from: https:
//doi.org/10.1145/320385.320395.

ISO/IEC, 2018. Programming languages — C. (ISO/IEC 9899:2018). Geneva, Switzerland:
ISO/IEC.

Jhala, R. and Vazou, N., 2021. Refinement types: a tutorial. Foundations and trends® in
programming languages [Online], 6(3-4), pp.159–317. Available from: https://doi.org/
10.1561/2500000032.

53

https://rust-lang.github.io/rfcs/2000-const-generics.html
https://rust-lang.github.io/rfcs/2000-const-generics.html
https://doi.org/10.1007/978-3-642-03153-3_2
https://doi.org/10.1145/1929529.1929536
https://eli.thegreenplace.net/2023/common-pitfalls-in-go-benchmarking/
https://eli.thegreenplace.net/2023/common-pitfalls-in-go-benchmarking/
https://doi.org/10.1109/ICSE48619.2023.00132
https://docs.oracle.com/javase/specs/jls/se21/html/index.html
https://docs.oracle.com/javase/specs/jls/se21/html/index.html
https://doi.org/10.1145/3428217
https://doi.org/10.1145/320385.320395
https://doi.org/10.1145/320385.320395
https://doi.org/10.1561/2500000032
https://doi.org/10.1561/2500000032

Johnston, P., 2017. Creating a circular buffer in c and c++ [Online]. Available from: https:
//embeddedartistry.com/blog/2017/05/17/creating-a-circular-buffer-in-c-

and-c/ [Accessed January 26, 2024].

Kennedy, A. and Syme, D., 2001. Design and implementation of generics for the .net common
language runtime. Sigplan not. [Online], 36(5), pp.1–12. Available from: https://doi.
org/10.1145/381694.378797.

Kulesza, T., 2020. Go developer survey 2019 results [Online]. The Go Blog. Available from:
https://go.dev/blog/survey2019-results [Accessed November 24, 2023].

Lachowicz, D., 2024. Proposal: go 2: const generics [Online]. Available from: https://
github.com/golang/go/issues/65555 [Accessed April 24, 2024].

Merrick, A., 2021. Go developer survey 2020 results [Online]. The Go Blog. Available from:
https://go.dev/blog/survey2020-results [Accessed November 24, 2023].

Merrick, A., 2022. Go developer survey 2021 results [Online]. The Go Blog. Available from:
https://go.dev/blog/survey2021-results [Accessed November 24, 2023].

Myers, A., 2009. CS 6110 lecture 8: evaluation contexts, semantics by translation [Online].
Cornell University. Available from: https : / / courses . cs . cornell . edu / cs6110 /

2009sp/lectures/lec08-sp09.pdf [Accessed November 27, 2023].

Norell, U., 2007. Towards a practical programming language based on dependent type theory
[Online]. PhD thesis. SE-412 96 Göteborg, Sweden: Department of Computer Science
and Engineering, Chalmers University of Technology. Available from: https://www.
cse.chalmers.se/~ulfn/papers/thesis.pdf.

Pierce, B.C., 2002. Types and programming languages. 1st ed. The MIT Press.

Pike, R., 2015. Simplicity is complicated [Online]. Available from: https://go.dev/talks/
2015/simplicity-is-complicated.slide [Accessed November 25, 2023].

Rust compiler development guide, 2023 [Online]. Available from: https://rustc- dev-
guide.rust-lang.org/ [Accessed November 25, 2023].

Scales, D. and Randall, K., 2022. Go 1.18 implementation of generics via dictionaries
and gcshape stenciling [Online]. Google Open Source. Available from: https://go.
googlesource.com/proposal/+/refs/heads/master/design/generics-implementation-

dictionaries-go1.18.md [Accessed November 25, 2023].

Steele, G.L., 2017. It’s time for a new old language. Sigplan not. [Online], 52(8), p.1. Available
from: https://doi.org/10.1145/3155284.3018773.

Taylor, I.L. and Griesemer, R., 2019. Contracts — draft design [Online]. Google Open
Source. Available from: https://go.googlesource.com/proposal/+/master/design/
go2draft-contracts.md [Accessed April 24, 2024].

54

https://embeddedartistry.com/blog/2017/05/17/creating-a-circular-buffer-in-c-and-c/
https://embeddedartistry.com/blog/2017/05/17/creating-a-circular-buffer-in-c-and-c/
https://embeddedartistry.com/blog/2017/05/17/creating-a-circular-buffer-in-c-and-c/
https://doi.org/10.1145/381694.378797
https://doi.org/10.1145/381694.378797
https://go.dev/blog/survey2019-results
https://github.com/golang/go/issues/65555
https://github.com/golang/go/issues/65555
https://go.dev/blog/survey2020-results
https://go.dev/blog/survey2021-results
https://courses.cs.cornell.edu/cs6110/2009sp/lectures/lec08-sp09.pdf
https://courses.cs.cornell.edu/cs6110/2009sp/lectures/lec08-sp09.pdf
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://go.dev/talks/2015/simplicity-is-complicated.slide
https://go.dev/talks/2015/simplicity-is-complicated.slide
https://rustc-dev-guide.rust-lang.org/
https://rustc-dev-guide.rust-lang.org/
https://go.googlesource.com/proposal/+/refs/heads/master/design/generics-implementation-dictionaries-go1.18.md
https://go.googlesource.com/proposal/+/refs/heads/master/design/generics-implementation-dictionaries-go1.18.md
https://go.googlesource.com/proposal/+/refs/heads/master/design/generics-implementation-dictionaries-go1.18.md
https://doi.org/10.1145/3155284.3018773
https://go.googlesource.com/proposal/+/master/design/go2draft-contracts.md
https://go.googlesource.com/proposal/+/master/design/go2draft-contracts.md

Taylor, I.L. and Griesemer, R., 2021. Type parameters proposal [Online]. Google Open Source.
Available from: https://go.googlesource.com/proposal/+/HEAD/design/43651-
type-parameters.md [Accessed November 16, 2023].

The const generics project group, 2021. Const generics MVP hits beta! [Online]. Rust Blog.
Available from: https://blog.rust-lang.org/2021/02/26/const-generics-mvp-
beta.html [Accessed November 12, 2023].

The Go programming language specification, 2021 [Online]. Google Open Source. Available
from: https://go.dev/doc/go1.17_spec [Accessed January 20, 2024].

The Go programming language specification, 2023 [Online]. Google Open Source. Available
from: https://go.dev/ref/spec [Accessed November 16, 2023].

The Rust reference, 2020 [Online]. Available from: https://doc.rust-lang.org/stable/
reference/ [Accessed November 21, 2023].

Tsai, J., 2020. reflect.DeepEqual on two empty slices returns false [Online]. Available from:
https://github.com/golang/go/issues/42265#issuecomment-718304456 [Accessed
January 26, 2024].

Vazou, N., 2015. A gentle introduction to liquid types [Online]. University of California San
Diego. Available from: https://goto.ucsd.edu/~ucsdpl-blog/liquidtypes/2015/
09/19/liquid-types/ [Accessed April 20, 2024].

Wagner, A., 2021. Proposal: go 2: spec: generic parameterization of array sizes [Online].
Google Open Source. Available from: https://github.com/golang/go/issues/44253#
issuecomment-821047754 [Accessed January 23, 2024].

Wagner, B., 2023. C# reference: arrays [Online]. Microsoft. Available from: https://learn.
microsoft . com / en - us / dotnet / csharp / language - reference / builtin - types /

arrays [Accessed November 23, 2023].

Werner, A., 2021. Proposal: generic parameterization of array sizes [Online]. Google Open
Source. Available from: https://go.googlesource.com/proposal/+/HEAD/design/
44253-generic-array-sizes.md [Accessed November 26, 2023].

Xi, H. and Pfenning, F., 1999. Dependent types in practical programming. Proceedings of
the 26th acm sigplan-sigact symposium on principles of programming languages [Online],
POPL ’99. San Antonio, Texas, USA: Association for Computing Machinery, pp.214–227.
Available from: https://doi.org/10.1145/292540.292560.

55

https://go.googlesource.com/proposal/+/HEAD/design/43651-type-parameters.md
https://go.googlesource.com/proposal/+/HEAD/design/43651-type-parameters.md
https://blog.rust-lang.org/2021/02/26/const-generics-mvp-beta.html
https://blog.rust-lang.org/2021/02/26/const-generics-mvp-beta.html
https://go.dev/doc/go1.17_spec
https://go.dev/ref/spec
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://github.com/golang/go/issues/42265#issuecomment-718304456
https://goto.ucsd.edu/~ucsdpl-blog/liquidtypes/2015/09/19/liquid-types/
https://goto.ucsd.edu/~ucsdpl-blog/liquidtypes/2015/09/19/liquid-types/
https://github.com/golang/go/issues/44253#issuecomment-821047754
https://github.com/golang/go/issues/44253#issuecomment-821047754
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/arrays
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/arrays
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/arrays
https://go.googlesource.com/proposal/+/HEAD/design/44253-generic-array-sizes.md
https://go.googlesource.com/proposal/+/HEAD/design/44253-generic-array-sizes.md
https://doi.org/10.1145/292540.292560

A Risk Assessment

Risk Impact
Likelihood
Rating

Impact
Rating

Preventive Actions

Being occupied
with other

activities during
semester

Not spending
enough time on

project, leading to
unfinished/poor
quality project

High High
Start project

ahead of the start
of semester

Flaw in design
Design and all
implementations
need to be fixed

Low-
Medium

Medium

Regularly discuss
design choices with
supervisor and

submit proposal to
Go community

Table 1: Risk Register

56

B Project Plan

Minor changes were made since the initial project plan. Most notably, select arithmetic
operators are to become part of the scope of the formal rules and interpreter, since they
have the potential to play an important role in compelling code examples, showcasing generic
array sizes. It is in the nature of arrays for there to be a way to loop over them, and operators
are primitives that can allow for that.

The less significant change was a slight offset in the schedule of the tasks. This is
not a concern since the project timeline had a large margin to begin with, with optional
“extension” tasks (not required for the submission of the project) making up the final third
of the timeline.

Each horizontal section in the chart denotes a milestone, comprised of one or more tasks.
Grey rectangles indicate tasks already completed at the time of updating the project plan.

2023-07-30 2023-08-27 2023-09-24 2023-10-22 2023-11-19 2023-12-17 2024-01-14 2024-02-11 2024-03-10 2024-04-07 2024-05-05

FG with arrays

FGG with arrays

FG with arrays

FGG with arrays

Interim

Operators

Progress Presentation

FGG with arrays to Go

Final

Go generic array sizes

Address feedback

Showcase video

Compiler extension

Progress + preservation

Extension objectives

Writeup

Formalisation

Interpreters

Monomorphiser

Proposal

Reports

Go Contribution

Proof

Publication

Figure 28: Timeplan of tasks, milestones and deliverables

57

C Description of array semantics

C.1 Value type

Arrays offer semantic differences, that may make it more appealing to build data structures
from for certain use cases. We’ve seen that arrays are value types, and as such, copies can
be easily made through simple assignment to a variable or passing into a function. While
cloning a single slice is not much more difficult, if we have a large, nested data structure,
that is slice-based, performing a deep-copy is a verbose and manual process (there is no
standard library deep-copy function as of Go 1.21). If instead, the data structure was array-
based, with no internal pointers (only potentially a top-level pointer to the data structure),
performing a deep copy becomes trivial.

C.2 Comparison

Arrays are comparable, while slices are not. Again, for a simple example, one could define a
function that compares the size and elements of slices to determine if two slices are equal in
value (not reference). It is slightly more difficult to do the same with a nested slice-based data
structure (although this time around, the standard library does provide reflect.DeepEqual
with some caveats6), a nested array-based data structure (with no internal pointers) can be
simply compared with the == operator.

This comparable attribute of arrays becomes extremely important when we wish to use a
collection of elements as a key in a hash map. Only comparable data structures can be used
as map keys, which means that arrays can be used as map keys, while slices cannot. This
also applies recursively, so slice-based data structures cannot be used as map keys, while
array-based ones can.

6reflect.DeepEqual differentiates between a nil and an empty slice, despite them semantically being
equivalent. cmp.Equal with the cmpopts.EquateEmpty option can be used instead to equate semantically
empty slices (Tsai, 2020).

58

https://pkg.go.dev/reflect#DeepEqual
https://pkg.go.dev/github.com/google/go-cmp/cmp#Equal
https://pkg.go.dev/github.com/google/go-cmp/cmp/cmpopts#EquateEmpty

D Code examples

D.1 Generic programming in C using macros

#include <stdio.h>

#define ARRAY(TYPE, SIZE, NAME) typedef struct { \

TYPE x[SIZE]; \

} NAME; \

\

TYPE NAME##_first(NAME s) { \

return s.x[0]; \

}

ARRAY(int, 5, Foo)

ARRAY(char*, 2, Bar)

int main(void) {

Foo f = { 1, 2, 3, 4, 5 };

printf("%d\n", Foo_first(f));

Bar b = { "hello", "world" };

printf("%s\n", Bar_first(b));

}

D.2 Full FGA implementation of resizeable arrays

In this particular example, the capacity of the resizeable array is hard-coded to 5. This can
of course be any value, but must be hard-coded without generically sized arrays. Because
FGA (unlike FGGA) does not support generics at all, some structs are monomorphised “by
hand” to work with all the types required for the example, e.g. Func and FuncA.

One may notice that this implementation is much more verbose than the idiomatic Go
example. This is due to a design decision to keep FGA simple and not introduce “un-
necessary” constructs such as boolean and subtraction (and therefore negative integers).
Church-like encoding is used for booleans and conditional logic (Barendregt, 1981), whereas
natural numbers (that can be incremented and decremented for the length of the Array) use
succ, pred and isZero similarly to how they’re found in B.C. Pierce (2002)’s calculus of
booleans and numbers. Functions have been encoded in a similar way as in Featherweight
Go (Griesemer et al., 2020) — structs are created to hold arguments, which implement the
Func interface with a single call method that takes no arguments. This way we can create
arbitrary closures (callbacks) for conditional selection.

59

type Array struct {

arr Arr

len Nat

}

func (a Array) Push(el int) Array {

return a.Cap().ifLessEqA(a.len,

ArrayFunc{a},

PushFunc{a, el})

}

func (f PushFunc) call() Array {

return Array{

f.a.arr.set(

f.a.len.val(), f.el),

Succ{f.a.len}}

}

func (a Array) Pop() Array {

return Array{a.arr, a.len.pred()}

}

func (a Array) Get(i Nat) int {

return a.len.ifLessEq(i,

IntFunc{0},

ArrGetFunc{a.arr, i.val()})

}

func (f ArrGetFunc) call() int {

return f.arr[f.i]

}

func (a Array) Len() Nat {

return a.len

}

func (a Array) Cap() Nat {

return Succ{Succ{Succ{Succ{Succ{Zero{}}}}}}

}

type EmptyArrayFunc struct {

}

func (e EmptyArrayFunc) call() Array {

return Array{Arr{0, 0, 0, 0, 0}, Zero{}}

}

60

type Arr [5]int

func (a Arr) set(i int, val int) Arr {

a[i] = val;

return a

}

type Nat interface {

val() int

pred() Nat

ifLessEq(other Nat, ifTrue Func, ifFalse Func) int

ifLessEqA(other Nat, ifTrue FuncA, ifFalse FuncA) Array

isZero() Bool

isZeroA() BoolA

}

type Bool interface {

eval(ifTrue Func, ifFalse Func) int

}

type BoolA interface {

eval(ifTrue FuncA, ifFalse FuncA) Array

}

type Func interface {

call() int

}

type FuncA interface {

call() Array

}

type True struct {

}

type TrueA struct {

}

func (t True) eval(ifTrue Func, ifFalse Func) int {

return ifTrue.call()

}

func (t TrueA) eval(ifTrue FuncA, ifFalse FuncA) Array {

return ifTrue.call()

}

61

type False struct {

}

type FalseA struct {

}

func (f False) eval(ifTrue Func, ifFalse Func) int {

return ifFalse.call()

}

func (f FalseA) eval(ifTrue FuncA, ifFalse FuncA) Array {

return ifFalse.call()

}

type Zero struct{}

func (z Zero) val() int {

return 0

}

func (z Zero) pred() Nat {

return z

}

func (z Zero) isZero() Bool {

return True{}

}

func (z Zero) isZeroA() BoolA {

return TrueA{}

}

func (z Zero) ifLessEq(other Nat, ifTrue Func, ifFalse Func) int {

return ifTrue.call()

}

func (z Zero) ifLessEqA(other Nat, ifTrue FuncA, ifFalse FuncA) Array {

return ifTrue.call()

}

type Succ struct {

predF Nat

}

62

func (s Succ) val() int {

return s.predF.val() + 1

}

func (s Succ) pred() Nat {

return s.predF

}

func (s Succ) isZero() Bool {

return False{}

}

func (s Succ) isZeroA() BoolA {

return FalseA{}

}

func (s Succ) ifLessEq(other Nat, ifTrue Func, ifFalse Func) int {

return other.isZero().eval(

ifFalse, IfLessEq{s.pred(), other.pred(), ifTrue, ifFalse})

}

func (s Succ) ifLessEqA(other Nat, ifTrue FuncA, ifFalse FuncA) Array {

return other.isZeroA().eval(

ifFalse, IfLessEqR{s.pred(), other.pred(), ifTrue, ifFalse})

}

type IfLessEq struct {

a Nat

b Nat

ifTrue Func

ifFalse Func

}

type IfLessEqR struct {

a Nat

b Nat

ifTrue FuncA

ifFalse FuncA

}

func (i IfLessEq) call() int {

return i.a.ifLessEq(i.b, i.ifTrue, i.ifFalse)

}

func (i IfLessEqR) call() Array {

63

return i.a.ifLessEqA(i.b, i.ifTrue, i.ifFalse)

}

type ArrayFunc struct {

a Array

}

func (r ArrayFunc) call() Array {

return r.a

}

type PushFunc struct {

a Array

el int

}

type ArrGetFunc struct {

arr Arr

i int

}

type IntFunc struct {

i int

}

func (i IntFunc) call() int {

return i.i

}

D.3 Full FGA implementation of dequeues

type Deque struct {

arr Arr

front Nat

back Nat

}

func (d Deque) PushFront(el int) Deque {

return d.succ(d.front).ifEqD(d.back, DequeFunc{d}, PushFrontFunc{d, el})

}

func (f PushFrontFunc) call() Deque {

return Deque{

f.d.arr.set(f.d.front.val(), f.el),

f.d.succ(f.d.front), f.d.back}

64

}

func (d Deque) PopFront() Deque {

return d.front.ifEqD(d.back, DequeFunc{d}, PopFrontFunc{d})

}

func (f PopFrontFunc) call() Deque {

return Deque{f.d.arr, f.d.pred(f.d.front), f.d.back}

}

func (d Deque) GetFront() int {

return d.front.ifEq(d.back,

IntFunc{0}, ArrGetFunc{d.arr, d.pred(d.front).val()})

}

func (d Deque) PushBack(el int) Deque {

return d.front.ifEqD(d.pred(d.back), DequeFunc{d}, PushBackFunc{d, el})

}

func (f PushBackFunc) call() Deque {

return Deque{

f.d.arr.set(f.d.pred(f.d.back).val(), f.el),

f.d.front, f.d.pred(f.d.back)}

}

func (d Deque) PopBack() Deque {

return d.front.ifEqD(d.back, DequeFunc{d}, PopBackFunc{d})

}

func (f PopBackFunc) call() Deque {

return Deque{f.d.arr, f.d.front, f.d.succ(f.d.back)}

}

func (d Deque) GetBack() int {

return d.front.ifEq(d.back, IntFunc{0}, ArrGetFunc{d.arr, d.back.val()})

}

func (d Deque) pred(n Nat) Nat {

return n.ifEqN(Zero{}, CapFunc{d}, PredFunc{n})

}

func (d Deque) succ(n Nat) Nat {

return n.ifEqN(d.Cap(), ZeroFunc{}, SuccFunc{n})

}

func (d Deque) Cap() Nat {

return Succ{Succ{Succ{Succ{Succ{Zero{}}}}}}

}

65

type EmptyDequeFunc struct {

}

func (e EmptyDequeFunc) call() Deque {

return Deque{Arr{0, 0, 0, 0, 0, 0}, Zero{}, Zero{}}

}

type CapFunc struct {

d Deque

}

func (f CapFunc) call() Nat {

return f.d.Cap()

}

type PredFunc struct {

n Nat

}

func (f PredFunc) call() Nat {

return f.n.pred()

}

type ZeroFunc struct {

}

func (z ZeroFunc) call() Nat {

return Zero{}

}

type SuccFunc struct {

n Nat

}

func (f SuccFunc) call() Nat {

return Succ{f.n}

}

type Arr [6]int

func (a Arr) set(i int, val int) Arr {

a[i] = val;

return a

}

66

type Nat interface {

val() int

pred() Nat

ifEq(other Nat, ifTrue Func, ifFalse Func) int

ifEqN(other Nat, ifTrue FuncN, ifFalse FuncN) Nat

ifEqD(other Nat, ifTrue FuncD, ifFalse FuncD) Deque

isZero() Bool

isZeroN() BoolN

isZeroD() BoolD

}

type Bool interface {

eval(ifTrue Func, ifFalse Func) int

}

type BoolN interface {

eval(ifTrue FuncN, ifFalse FuncN) Nat

}

type BoolD interface {

eval(ifTrue FuncD, ifFalse FuncD) Deque

}

type Func interface {

call() int

}

type FuncN interface {

call() Nat

}

type FuncD interface {

call() Deque

}

type True struct {

}

type TrueN struct {

}

type TrueD struct {

}

67

func (t True) eval(ifTrue Func, ifFalse Func) int {

return ifTrue.call()

}

func (t TrueN) eval(ifTrue FuncN, ifFalse FuncN) Nat {

return ifTrue.call()

}

func (t TrueD) eval(ifTrue FuncD, ifFalse FuncD) Deque {

return ifTrue.call()

}

type False struct {

}

type FalseN struct{}

type FalseD struct {

}

func (f False) eval(ifTrue Func, ifFalse Func) int {

return ifFalse.call()

}

func (f FalseN) eval(ifTrue FuncN, ifFalse FuncN) Nat {

return ifFalse.call()

}

func (f FalseD) eval(ifTrue FuncD, ifFalse FuncD) Deque {

return ifFalse.call()

}

type Zero struct{}

func (z Zero) val() int {

return 0

}

func (z Zero) pred() Nat {

return Zero{}

}

func (z Zero) ifEq(other Nat, ifTrue Func, ifFalse Func) int {

return other.isZero().eval(ifTrue, ifFalse)

}

68

func (z Zero) ifEqN(other Nat, ifTrue FuncN, ifFalse FuncN) Nat {

return other.isZeroN().eval(ifTrue, ifFalse)

}

func (z Zero) ifEqD(other Nat, ifTrue FuncD, ifFalse FuncD) Deque {

return other.isZeroD().eval(ifTrue, ifFalse)

}

func (z Zero) isZero() Bool {

return True{}

}

func (z Zero) isZeroN() BoolN {

return TrueN{}

}

func (z Zero) isZeroD() BoolD {

return TrueD{}

}

type Succ struct {

predF Nat

}

func (s Succ) val() int {

return s.predF.val() + 1

}

func (s Succ) pred() Nat {

return s.predF

}

func (s Succ) ifEq(other Nat, ifTrue Func, ifFalse Func) int {

return other.isZero().eval(ifFalse, IfEq{s.pred(), other.pred(), ifTrue, ifFalse})

}

func (s Succ) ifEqN(other Nat, ifTrue FuncN, ifFalse FuncN) Nat {

return other.isZeroN().eval(ifFalse, IfEqN{s.pred(), other.pred(), ifTrue, ifFalse})

}

func (s Succ) ifEqD(other Nat, ifTrue FuncD, ifFalse FuncD) Deque {

return other.isZeroD().eval(ifFalse, IfEqD{s.pred(), other.pred(), ifTrue, ifFalse})

}

69

type IfEq struct {

a Nat

b Nat

ifTrue Func

ifFalse Func

}

type IfEqN struct {

a Nat

b Nat

ifTrue FuncN

ifFalse FuncN

}

type IfEqD struct {

a Nat

b Nat

ifTrue FuncD

ifFalse FuncD

}

func (i IfEq) call() int {

return i.a.ifEq(i.b, i.ifTrue, i.ifFalse)

}

func (i IfEqN) call() Nat {

return i.a.ifEqN(i.b, i.ifTrue, i.ifFalse)

}

func (i IfEqD) call() Deque {

return i.a.ifEqD(i.b, i.ifTrue, i.ifFalse)

}

func (s Succ) isZero() Bool {

return False{}

}

func (s Succ) isZeroN() BoolN {

return FalseN{}

}

func (s Succ) isZeroD() BoolD {

return FalseD{}

}

70

type DequeFunc struct {

d Deque

}

func (f DequeFunc) call() Deque {

return f.d

}

type PushFrontFunc struct {

d Deque

el int

}

type PopFrontFunc struct {

d Deque

}

type IntFunc struct {

i int

}

func (f IntFunc) call() int {

return f.i

}

type ArrGetFunc struct {

arr Arr

i int

}

func (f ArrGetFunc) call() int {

return f.arr[f.i]

}

type PushBackFunc struct {

d Deque

el int

}

type PopBackFunc struct {

d Deque

}

71

E Proposal addendum

E.1 More complex const bounds

What about when two distinct type parameters appear in a “constant” expression, such as
in the (somewhat contrived) example below:

func difference[T any, N const, M const](a [N]T, b [M]T) [N - M]T {

// some presumably useful code...

}

This code is only safe to execute when N ≥ M . This adds additional complexity, as
we need to extend our approach from before if we wish to pursue the liberal approach.
In the implicit model, the compiler would have to reject all instantiations of the function
where N < M . In the explicit model, the slicing notation would be allowed to accept
constant expressions, and since type parameters are constant expressions, they could be
used to explicitly constrain the type parameters. Go already permits referencing other type
parameters, including the one that is being constrained, in the constraint of a type parameter.
The compiler would still need to verify that the bounds specified by the programmer make
the operation legal for all instantiations.

func difference[T any, N const[M:], M const](a [N]T, b [M]T) [N - M]T {

// some presumably useful code...

}

Another area of concern that may arise with the liberal approach is recursively defined
functions or types, where the numerical type parameter differs in each recursive instantiation
(as shown in figure 29). Attempting to monomorphise such code would lead to extreme code
bloat, and should not be allowed. In both the implicit and explicit models, this is a non-
issue, as without knowing how the function or type will behave at runtime, there is no range
of values N that would be guaranteed to not cause an underflow/overflow, so such a function
cannot be defined. E.g. if in newArrStrange we give N an explicit upper bound of x, than
the compiler would complain, since within the body of the function newArrStrange could be
recursively called with a type argument of x+ 1, which exceeds the type parameter’s upper
bound.

func newArrStrange[T any, N const, M const](n int) [N + M]T {

if n == 0 {

return [N + M]T{}

}

return newArrStrange[T, N + 1, M - 1]()

}

Figure 29: Contrived recursively defined construction of array

72

func expressions[T any, N const](arr [N]T) {

const _ = len(arr) // does not compile

_ = len(arr) // compiles - non-constant int type

const _ = N // does not compile

_ = N // compiles - non-constant int type

}

Figure 30: Expressions derived from a numerical type parameter are non-constant

E.2 Slicing generic arrays

Since in the conservative model, we have no guarantees about the array bounds, the only
permitted slicing operation is [:], which creates a slice of the entire array. Just as with the
index operation, if the programmer wishes to move the bounds check to runtime, they can
simply reslice the slice obtained from [:]. It is worth noting, that as of Go 1.21, slicing a
generic variable that is constrained by a union of array types is forbidden (even [:] is not
allowed). The liberal approach could be used to set lower bounds on array lengths to allow
compile-time safe generic array slicing, other than just [:].

E.3 The len function

Go’s built-in len function is special in the sense that depending on the context, it may or
may not be computed at compile time (The Go Programming Language Specification, 2023).
If it is computed at compile time, we can assign the result to a const variable, or use it in
any other place that requires a compile-time constant non-negative integer value, such as for
the length of an array.

An example of a compile-time evaluation of len is when it is applied to an array value
literal, and an example of a run-time evaluation of len is when it is applied to a slice
value. The question arises, how should len treat generic arrays (specifically, ones that are
parameterised on size)?

If we take Rust’s conservative approach of prohibiting the use of expressions that include
constant type parameters (except when the expression is a lone type parameter) as type
arguments (The const generics project group, 2021), which include applying len to a gener-
ically sized array, then it becomes clear why len of a generically sized array should yield a
non-constant integer (as indeed is the case in Rust). Without this restriction, the compiler
would have to keep track of which constant was derived from an expression containing a
type-parameter, to prevent the later usage of such a constant in another const expression
used as a type argument. The same logic applies to the numerical type parameters them-
selves: if they could be assigned to constant variables, then the constant variable could be
used as part of a constant expression used to instantiate a const type parameter, leading
to the problems discussed in the previous section. And so, when const type parameters
are used as values, the resulting expression type should be a non-constant int under the
conservative model.

73

type array interface {

[2]int | [3]int

}

func foo[A array](a A) {

// compile error: len(a) (value of type int) is not constant

const n = len(a)

}

Figure 31: As of Go 1.18, len of an array union type set interface value is non-constant

If we view the generally sized arrays as the union of array types of all sizes (similar to
the explicitly enumerated array type union we can already represent in code), then we can
keep things as they are currently in Go. I.e. a generic type bound by a union of arrays has
a non-constant len.

This is likely to avoid constraining the compiler implementation. With a full monomor-
phisation approach, the const of the example above is not an issue, as each instantiation
of the function has its own local const n with a distinct value. However, in the current
GC Shape Stenciling approach used by the Go compiler as of Go 1.18 (Scales and Randall,
2022), it is possible to construct a union of array types that have the same GC shape, yet
the length of the array type differs. In such cases, consts within a generic function would be
difficult or even impossible to handle correctly. A simpler explanation is that generic types
simply always have non-constant lengths (given len is defined on all types of the type set),
regardless of whether or not values of their constraint type could yield a constant length
(The Go Programming Language Specification, 2023).

74

F Featherweight Go with Arrays addendum

F.1 FGA Syntax: Expressions

Expressions may take on a number of forms. The most basic expressions are integer literals
(e.g. 0, 1, 2, 10, -1 etc.). Variables, which in the context of FGA happen to be parameter
names, are also basic expressions.

Complex expressions may involve 0 or more subexpressions. The first kind are method
calls, which are recursively defined as an expression, followed by a dot, followed by a method
name (an identifier), followed by a sequence of expressions enclosed in parentheses. Another
recursively defined kind of expression is a value literal, which consists of a value type name,
followed by a sequence of expressions enclosed in curly brackets. Value literals are used to
instantiate structs or arrays. The select expression consists of an expression, followed by a
dot and the field name (an identifier), which is used to select a field from a struct. An array
index consists of an expression, followed by another expression enclosed in square brackets.
The array index expression is used to retrieve an element of an array (the first subexpression)
at a specified index (the second subexpression).

F.2 FGA Reduction

The auxiliary function fields looks up the struct type name given as an argument in the
sequence of declarations, and returns the sequence of fields in the definition of the struct
type. The rule R-Field says that a select expression on a struct literal value evaluates to the
field value corresponding to the same position in the struct literal as the field name is in the
struct type declaration.

The auxiliary function indexBounds returns a set of valid index indices of an array type,
i.e. the set of indices that are within the bounds of the array. The rule R-Index says an
array index expression on an array literal value with an integer literal n as the index reduces
to the element of the array at index n, if and only if n is within bounds of the array.

The auxiliary function body looks up the method declaration given by the type name
and method name, and returns the expression in the body of that method with a template
for the receiver and parameters. The rule R-Call says that a method call expression where
the receiver is a value and the arguments are also values, reduces to the body of the method
defined on the type of the receiver, with the actual parameters (receiver and arguments)
substituted for the formal parameters in the body template.

Apart from the computation rules described above, there is also a congruence rule defined
in terms of evaluation contexts, which says that if d evaluates to e, then d in the context of E
evaluates to e in the same context E. The evaluation context defines the order of evaluation
(Myers, 2009), when there are multiple subexpressions in a single expression, and where at
least one of the subexpressions is not a value.

By the evaluation context rules, a method call must first reduce its receiver to a value,
and subsequently reduce its arguments to values, one by one. A value literal has its elements
reduced to values, one by one. A select expression must first reduce its receiver to a value.
An array index must first reduce its receiver to an array literal value, and then its index
expression to a value.

75

F.3 FGA Typing

A method specification is considered well-typed if the parameter names are distinct (i.e. each
parameter name is different) and the parameter and return types are themselves well-typed
(rule T-Specification).

A struct type literal is well-formed if all of its fields are distinct and the field types are
themselves well-formed (rule T-Struct). An interface type literal is well-formed if all of its
method specifications are unique (i.e. each method specified in the interface has a different
name) and well-formed (rule T-Interface). An array type literal is well-formed if the integer
literal defining the size of the array is greater than or equal to zero, and the array element
type is well-formed (rule T-Array).

A type declaration is well-formed if its type literal is well-formed (rule T-Type). A
method declaration is well-formed if the parameters (including the receiver) are distinct, the
receiver, parameter and return types are well-formed and the method expression’s type is a
subtype of the return type under the environment formed from the method parameters (and
receiver) (rule T-Func).

The rule T-Var formally defines what it means for a variable x to be of type t under the
environment Γ, i.e. when the pair x : t is in Γ. A method call expression is well-formed and
of the type u being the method specification’s return type, when the receiver expression is
well-typed and has a method named m in the method set of its type. In addition, all the
argument expressions must be well-typed, and be subtypes of the formal parameter types
(rule T-Call). A struct literal expression is well-formed and of the struct type that was
instantiated, if the struct type is well-formed, and each element’s type of the struct literal
is a subtype of the corresponding field types in the struct type declaration (rule T-Struct-
Literal). A field select expression is well-typed if the receiver is well-typed and of struct type.
The expression is of the same type as the field corresponding to the selected field name in
the struct type declaration (rule T-Field).

Finally, a program is well-typed when all the type declaration names are distinct (and
do not coincide with the predeclared int type name). The auxiliary function tdecls returns
all type names declared in the program. The method declarations must also be distinct, in
the sense that no two methods declared on the same type may have the same name. The
auxiliary function mdecls returns all pairs of tV .m (receiver type + method name) declared
in the program. All declarations along with the main expression must also be well-formed
(rule T-Prog).

76

G Featherweight Generic Go with Arrays addendum

G.1 FGGA Typing

The methods∆ auxiliary is now a partial function, not defined on the const type. This is
because there is currently never a context in which the methods∆ would need to be applied to
const. In a future extension, type parameters bounded by const could be used as expressions
(since they will be instantiated with integer values in user programs), in which case we could
define methods∆(const) = {} so that they implement the empty interface. We could then
additionally have a rule stating that type parameters bounded by const implement int.

Because methods∆ is not defined on const, there is an additional subtyping rule that
specifies that type parameters which are bound by const, are also subtypes of const (rule
<:const−Param). All type parameters are subtypes of their bounds, but where the bounds are
a regular interface (i.e. not const), this can already be derived via the <:I rule.

The remainder of the T-Type rule checks that the type declaration’s type parameters
constraints Φ are well-formed (via T-Formal), and that the type literal is well-typed in the
typing environment formed from Φ.

The rule T-Const asserts that const type passes the bounds type check in the T-Formal
rule in any environment ∆. The T-Specification rule has been updated to type check the
parameter and return types under the typing environment Φ. Additionally, neither the
parameter nor return types may be const types. T-Struct has similarly been updated to
check the field types in the environment Φ, and to only permit non-const field types.

The T-Func and T-Func-Arrayset rules have been updated to look up the type parameter
constraints based on the receiver type parameters to construct typing environments for the
updated type-checking rules. Rules T-Int-Literal, T-Var, T-Call, T-Struct-Literal, T-Field
and T-Program are all updated to use types τ and typing environments ∆. The supertype
of an array literal’s elements is determined by type parameter substitution on the array’s
element type.

As before, there are two rules for performing an array index operation, one where the
type of the index is int, and one where the type is an integer literal (rules T-Array-Index
and T-Array-Index-Literal).

G.1.1 Not Referenced predicate

The recursive case of notReferenced exists for named types t[τ], and the base cases are the
remaining type kinds; integer literals cannot be used as a type name, and neither can the
keyword const, so there is no possibility of a self-reference for those types. If a type is named
the same as a type parameter, the type parameter will shadow the type name, and no self-
reference occurs. When checking for self-reference in a named type, first we check whether the
named-type’s type name t is equal to any of the types we have already seen tr. Initially, the
seen types sequence only contains the type we are type checking in T-Type. notReferenced
is performed recursively on all type arguments, as those could also be referencing one of the
types from tr. To detect indirect self-references (i.e. circular references), notReferenced is
applied on all type parameter bounds of the named type’s declaration, appending the type
name t to the sequence of seen type names tr to check for self-references. While theoretically,

77

we could have just a single type tr to check for at a time, rather than a sequence, this would
lead to problems when checking types that are self-referential, but do not contain the initial
type tr in the cycle, as the rule would recurse indefinitely.

78

H Formal derivation examples

H.1 Featherweight Go with Arrays reduction

Below are derivation trees reducing an example FGA expression down to a value. Each
reduction step in the example program has its own derivation tree.

D0 = type any interface{}
D1 = type AnyArray2 [2] any

D2 = func(this AnyArray2) First() any {return this[0]}
D3 = func(this AnyArray2) Set(i int, v any) AnyArray2 { this[i] = v; return this }
D = (D0, D1, D2, D3)

D1 ∈ D

{0, 1} = indexBounds(AnyArray2)

0 ∈ indexBounds(AnyArray2)

D3 ∈ D

isArraySetMethod(AnyArray2 . Set)
R-Array-Set

AnyArray2 {1, 2}. Set(0, 3) → AnyArray2 {3, 2}
R-Context

AnyArray2 {1, 2}. Set(0, 3).First() → AnyArray2 {3, 2}.First()

D2 ∈ D

(this : AnyArray2). this[0] = body(AnyArray2 .First)
R-Call

AnyArray2 {3, 2}.First() → AnyArray2 {3, 2}[0]

D1 ∈ D

{0, 1} = indexBounds(AnyArray2)

0 ∈ indexBounds(AnyArray2)
R-Index

AnyArray2 {3, 2}[0] → 3

H.2 Featherweight Go with Arrays type checking

Below are derivation trees type checking two simple FGA programs, using a common set of
declarations. Since each type checking derivation tree would be too large to fit on a single
page, the trees have been split into multiple smaller subtrees.

79

D0 = type any interface{}
D1 = type AnyArray2 [2] any

D2 = func(this AnyArray2) First() any {return this[0]}
D3 = func(this AnyArray2) Length() int {return 2}
D = (D0, D1, D2, D3)

e1 = AnyArray2 {1, 2}.First()
e2 = AnyArray2 {1, 2}.Length()

AA2 = AnyArray2

interface{} ok
T-Interface

notReferenced(any, interface{})
D0 ok

T-Type

2 ≥ 0

D0 ∈ D

any ok
T-Named

[2] any ok
T-Array

D0 ∈ D AnyArray2 ̸= any notReferenced(AnyArray2, any, interface{})
notReferenced(AnyArray2, any)

[2] any ok

notReferenced(AnyArray2, any)

notReferenced(AnyArray2, [2] any)

D1 ok
T-Type

distinct(this)

D1 ∈ D

AnyArray2 ok
T-Named

D0 ∈ D

any ok
T-Named

(this : AA2) ∈ (this : AA2)

this : AA2 ⊢ this : AA2
T-Var

this : AA2 ⊢ 0 : 0
T-Int-Literal

0 ≤ 0 < 2

0 ≤ 0 < lenType(AA2)

80

D1 ∈ D

any = elementType(AA2)

this : AA2 ⊢ this : AA2 this : AA2 ⊢ 0 : 0
0 ≤ 0 < lenType(AA2) any = elementType(AA2)

this : AA2 ⊢ this[0] : any
T-Array-Index

methods(any) ⊇ methods(any)

any <: any
I

distinct(this)
AnyArray2 ok any ok this : AnyArray2 ⊢ this[0] : any any <: any

D2 ok
T-Func

int ok
T-Int-Type

this : AnyArray2 ⊢ 2 : 2
T-Int-Literal

2 <: int
Int-N

distinct(this)
AnyArray2 ok int ok this : AnyArray2 ⊢ 2 : 2 2 <: int

D3 ok
T-Func

methods(1) ⊇ methods(any)

1 <: any
<:I

methods(2) ⊇ methods(any)

2 <: any
<:I

∅ ⊢ 1 : 1
T-Int-Literal ∅ ⊢ 2 : 2

T-Int-Literal

AnyArray2 ok ∅ ⊢ 1 : 1
∅ ⊢ 2 : 2 any = elementType(AnyArray2) 1 <: any 2 <: any

∅ ⊢ AnyArray2 {1, 2} : AnyArray2
T-Array-Literal

(First() any) ∈ {(First() any), (Length() int)}
(First() any) ∈ methods(AnyArray2)

∅ ⊢ AnyArray2 {1, 2} : AnyArray2 (First() any) ∈ methods(AnyArray2)

∅ ⊢ e1 : any
T-Call

81

D0 ok D1 ok D2 ok D3 ok

D ok

distinct(tdecls(D), int) distinct(mdecls(D)) D ok ∅ ⊢ e1 : any

main; D func main() { = e1} ok
T-Prog

(Length() int) ∈ {(First() any), (Length() int)}
(Length() int) ∈ methods(AnyArray2)

∅ ⊢ AnyArray2 {1, 2} : AnyArray2 (Length() int) ∈ methods(AnyArray2)

∅ ⊢ e2 : int
T-Call

distinct(tdecls(D)) distinct(mdecls(D)) D ok ∅ ⊢ e2 : int

main; D func main() { = e2} ok
T-Prog

H.3 Featherweight Generic Go with Arrays reduction

Below are derivation trees reducing an example FGGA expression down to a value.

D0 = type any interface{}
D1 = type Array[N const,T any] [N] T

D2 = func(this Array[N,T]) Get(i int) any {return this[i]}
D3 = func(this Array[N,T]) Set(i int, v T) AnyArray2 { this[i] = v; return this }
D = (D0, D1, D2, D3)

D1 ∈ D

{0, 1} = indexBounds(Array[2, int])

0 ∈ indexBounds(Array[2, int])

D3 ∈ D

isArraySetMethod(Array . Set)
R-Array-Set

Array[2, int]{1, 2}. Set(0, 3) → Array[2, int]{3, 2}
R-Context

Array[2, int]{1, 2}. Set(0, 3).Get(0) → Array[2, int]{3, 2}.Get(0)

82

D2 ∈ D

(this : Array[2, int], i : int). this[i] = body(Array[2, int].First)
R-Call

Array[2, int]{3, 2}.Get(0) → Array[2, int]{3, 2}[0]

D1 ∈ D

{0, 1} = indexBounds(Array[2, int])

0 ∈ indexBounds(Array[2, int])
R-Index

Array[2, int]{3, 2}[0] → 3

H.4 Featherweight Generic Go with Arrays type checking

Below is a derivation tree type checking a simple FGGA program.

D0 = type any interface{}
D1 = type Array[N const,T any] [N] T

D2 = func(this Array[N,T]) Get(i int) any {return this[i]}
D = (D0, D1, D2)

e1 = Array[2, int]{1, 2}.Get(0)

e2 = Array[2, int]{1, 2}.Length()
Φ = (N const,T any)

83

∅ ⊢ interface{} ok
T-Interface

notReferenced(any, interface{})
D0 ok

T-Type

distinct(N,T) Φ ⊢ const ok
T-Const

D0 ∈ D

Φ ⊢ any ok
T-Named

Φ ok
T-Formal

(N : const) ∈ Φ

Φ ⊢ N <:const
Const-Param

isConstΦ(N)

(N : const) ∈ Φ

Φ ⊢ N ok
T-Param

Φ ⊢ N ok isConstΦ(N)

(T : any) ∈ Φ

Φ ⊢ T ok
T-Param ¬isConstΦ(T)

Φ ⊢ [N] T ok
T-Array

notReferencedα(Array, const)

Array ̸= any

notReferencedα(Array, any)

notReferenced(Array,T)

notReferenced(Array, [N] T)

Φ ok notReferencedα(Array, const)
notReferencedα(Array, any) Φ ⊢ [N] T ok notReferenced(Array, [N] T)

D1 ok
T-Type

distinct(this) D1 ∈ D ¬isConstΦ(int) Φ ⊢ int ok
T-Int-Type

(T : any) ∈ Φ

Φ ⊢ T ok
T-Param

D1 ∈ D

Φ = typeParams(Array)

84

η0 = (N :=N,T :=T)

η0 = (N const := N,T any :=T)

D1 ∈ D

T = elementType(Array)[η0]

(this : Array[N,T]) ∈ (this : Array[N,T], i : int)

Φ; this : Array[N,T], i : int ⊢ this : Array[N,T]
T-Var

(i : int) ∈ (this : Array[N,T], i : int)

Φ; this : Array[N,T], i : int ⊢ i : int
T-Var

Φ = typeParams(Array)
η0 = (N const := N,T any :=T) T = elementType(Array)[η0]

Φ; this : Array[N,T], i : int ⊢ this : Array[N,T]
Φ; this : Array[N,T], i : int ⊢ i : int

Φ; this : Array[N,T] ⊢ this[i] : T
T-Array-Index

Φ ⊢ T <:T
<:Param ¬isConstΦ(T)

distinct(this) D1 ∈ D ¬isConstΦ(int) Φ ⊢ int ok
Φ ⊢ T ok Φ; this : Array[N,T] ⊢ this[i] : T Φ ⊢ T <:T ¬isConstΦ(T)

D2 ok
T-Func

2 ≥ 0

∅ ⊢ 2 <: const
<:const−n

methods∅(int) ⊇ methods∅(any)

∅ ⊢ int <: any
<:I

η1 = (N :=2,T :=int)

η1 = (N const := 2,T any :=int) ∅ ⊢ 2 <: const ∅ ⊢ int <: any

η1 = (N const :=∅ 2, T any :=∅ int)

(Get(i int) int) ∈ {(Get(i int) T)[η1], (Length() int)[η1]}
(Get(i int) int) ∈ methods∅(Array[2, int])

2 ≥ 0

∅ ⊢ 2 ok
T-N-Type ∅ ⊢ int ok

T-Int-Type
D1 ∈ D η1

∅ ⊢ Array[2, int] ok
T-Named

85

D1 ∈ D

Φ = typeParams(Array)

η2 = (N :=2, T := int)

η2 = (N const := 2, T any := int)

int = T[η2]

int = elementType(Array)[η2] ∅; ∅ ⊢ 1 : 1, 2 : 2
T-Int-Literal

∅ ⊢ 1 <: int
<:int−n ∅ ⊢ 2 <: int

<:int−n

∅ ⊢ Array[2, int] ok Φ = typeParams(Array)
η2 = (N :=2,T :=int) int = elementType(Array)[η2]

∅; ∅ ⊢ 1 : 1, 2 : 2 ∅ ⊢ 1 <: int ∅ ⊢ 2 <: int

∅; ∅ ⊢ Array[2, int]{1, 2} : Array[2, int]
T-Array-Literal

∅; ∅ ⊢ 0 : 0
T-Int-Literal ∅ ⊢ 0 <: int

Int-N

(Get(i int) int) ∈ methods∅(Array[2, int])
∅; ∅ ⊢ Array[2, int]{1, 2} : Array[2, int] ∅; ∅ ⊢ 0 : 0 ∅ ⊢ 0 <: int

∅; ∅ ⊢ e1 : int
T-Call

D0 ok D1 ok D2 ok D3 ok

D ok

distinct(tdecls(D), int) distinct(mdecls(D)) D ok ∅; ∅ ⊢ e1 : int

main; D func main() { = e1} ok
T-Prog

86

	Introduction
	Background
	Problem Statement
	Aim
	Objectives
	Research Questions
	Report Structure

	Background Research
	Generic array sizes in other languages
	Const generics in Rust

	Type systems and programming language theory
	Dependent and refinement types
	Featherweight Go

	Arrays by example
	Gentle introduction
	Array semantics
	Limitations

	Data structure examples

	Generically sized arrays
	Type-set interfaces and the const interface
	Comparison with existing proposal
	Allowed const type arguments
	Allowed operations on generic arrays
	Summary of proposal

	Featherweight Go with Arrays
	FGA Syntax
	FGA Reduction
	FGA Typing
	FGA Properties

	Featherweight Generic Go with Arrays
	FGGA Syntax
	FGGA Reduction
	FGGA Typing
	FGGA Properties

	Monormorphisation from FGGA to Go
	Formalisation
	Monormorphisation properties

	Implementation
	Libraries and patterns
	Testing

	Conclusion
	Further work

	References
	Risk Assessment
	Project Plan
	Description of array semantics
	Value type
	Comparison

	Code examples
	Generic programming in C using macros
	Full FGA implementation of resizeable arrays
	Full FGA implementation of dequeues

	Proposal addendum
	More complex const bounds
	Slicing generic arrays
	The len function

	Featherweight Go with Arrays addendum
	FGA Syntax: Expressions
	FGA Reduction
	FGA Typing

	Featherweight Generic Go with Arrays addendum
	FGGA Typing
	Not Referenced predicate

	Formal derivation examples
	Featherweight Go with Arrays reduction
	Featherweight Go with Arrays type checking
	Featherweight Generic Go with Arrays reduction
	Featherweight Generic Go with Arrays type checking

